精英家教网 > 高中数学 > 题目详情
3.如图,在四棱锥S-ABCD中,平面ABCD⊥平面SAB,侧面SAB为等边三角形,底面ABCD为直角梯形,AB∥CD,AB⊥BC,AB=12,CD=BC=6.
(1)求证:AB⊥DS;
(2)求平面SAD与平面SBC所成锐二面角的余弦值.

分析 (1)取AB的中点O,连结OD,OS,推导出AB⊥OS,AB⊥OD,由此能证明AB⊥SD.
(2)推导出OS⊥平面ABCD,以O为原点,建立空间直角坐标系,利用向量法能求出平面SAD与平面SBC所成锐二面角的余弦值.

解答 证明:(1)取AB的中点O,连结OD,OS,
∵△SAB是正三角形,∴AB⊥OS,
∵四边形ABCD是直角梯形,DC=$\frac{1}{2}AB$,AB∥CD,
∴四边形OBCD是矩形,∴AB⊥OD,
又OS∩OD=O,∴AB⊥平面SOD,
∴AB⊥SD.
解:(2)∵平面ABCD⊥平面SAB,AB⊥OS,
平面ABCD∩平面ABE=AB,
∴OS⊥平面ABCD,
如图,以O为原点,建立空间直角坐标系,
则A(0,6,0),B(0,-6,0),D(6,0,0),C(6,-6,0),
S(0,0,6$\sqrt{3}$),
$\overrightarrow{DS}$=(-6,0,6$\sqrt{3}$),$\overrightarrow{AD}$=(6,-6,0),
设平面SAD的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DS}=-6x+6\sqrt{3}z=0}\\{\overrightarrow{n}•\overrightarrow{AD}=6x-6y=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}=(\sqrt{3},\sqrt{3},1)$,
同理,得平面SBC的一个法向量$\overrightarrow{m}$=(0,-$\sqrt{3}$,1),
则cosθ=$\frac{|\overrightarrow{n}•\overrightarrow{m}|}{|\overrightarrow{n}|•|\overrightarrow{m}|}$=$\frac{2}{\sqrt{7}×2}=\frac{\sqrt{7}}{7}$.
∴平面SAD与平面SBC所成锐二面角的余弦值为$\frac{\sqrt{7}}{7}$.

点评 本题考查线线垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知t为实数,函数f(x)=2loga(2x+t-2),g(x)=logax,其中0<a<1.
(1)若函数y=g(ax+1)-kx是偶函数,求实数k的值;
(2)当x∈[1,4]时,f(x)的图象始终在g(x)的图象的下方,求t的取值范围;
(3)设t=4,当x∈[m,n]时,函数y=|f(x)|的值域为[0,2],若n-m的最小值为$\frac{1}{6}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右焦点F作该双曲线一条渐近线的垂线交此渐近线于点M,若O为坐标原点,△OFM的面积是$\frac{1}{2}{a^2}$,则该双曲线的离心率是(  )
A.2B.$\sqrt{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在四棱锥P-ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD相交于点O,PO⊥平面ABCD,PB与平面ABCD所成角为45°,若E是PB的中点,则异面直线DE与PA所成角的余弦值为(  )
A.$\frac{{3\sqrt{10}}}{20}$B.$\frac{{\sqrt{10}}}{20}$C.$\frac{{2\sqrt{5}}}{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设F1,F2分别是双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点,A为双曲线的左顶点,以线段F1,F2为直径的圆O与双曲线的一个交点为P,与y轴交于B,D两点,且与双曲线的一条渐近线交于M,N两点,则下列命题正确的是②③④.(写出所有正确的命题编号)
①线段BD是双曲线的虚轴;
②△PF1F2的面积为b2
③若∠MAN=120°,则双曲线C的离心率为$\frac{{\sqrt{21}}}{3}$;
④△PF1F2的内切圆的圆心到y轴的距离为a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若对于任意的x>0,不等式$\frac{x}{{x}^{2}+3x+1}$≤a恒成立,则实数a的取值范围为(  )
A.a≥$\frac{1}{5}$B.a>$\frac{1}{5}$C.a<$\frac{1}{5}$D.a≤$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.现有清华、北大、上海交大三所大学的招生负责人各一人来我市宣讲2017年高考自主招生政策,我市四所重点中学必须且只能邀请其中一所大学的负责人,且邀请其中任何一所大学的负责人是等可能的.
(Ⅰ)求恰有两所重点中学邀请了清华招生负责人的概率;
(Ⅱ)设被邀请的大学招生负责人的个数为ξ,求ξ分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|0<x<2},B={x|x2-1≤0},那么A∪B=(  )
A.{x|0<x≤1}B.{x|-1≤x<2}C.{x|-1≤x<0}D.{x|1≤x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a=($\frac{1}{2}$)${\;}^{\frac{1}{3}}$,b=($\frac{1}{2}$)${\;}^{\frac{2}{3}}$,c=log${\;}_{\frac{1}{2}}$$\frac{1}{3}$,则a,b,c的大小关系是(  )
A.a>b>cB.c>a>bC.b>c>aD.c>b>a

查看答案和解析>>

同步练习册答案