【题目】已知函数 .
(1)求函数的单调递减区间;
(2)求函数在区间上的最大值及最小值.
【答案】(Ⅰ),;(Ⅱ)取得最大值,取得最小值.
【解析】
试题(Ⅰ)先根据两角和余弦公式、二倍角公式、配角公式将函数化为基本三角函数:,再根据正弦函数性质求单调区间:由解得,最后写出区间形式(Ⅱ)先根据自变量范围确定基本三角函数定义区间:,再根据正弦函数在此区间图像确定最值:当时,取得最小值;
当时,取得最大值1.
试题解析:(Ⅰ)
. ……………………………………3分
由,,得,.
即的单调递减区间为,.……………………6分
(Ⅱ)由得, ………………………………8分
所以. …………………………………………10分
所以当时,取得最小值;
当时,取得最大值1. ………………………………13分
科目:高中数学 来源: 题型:
【题目】已知函数在处的切线方程为.
(1)求函数的解析式;
(2)若关于的方程f(x)=kex(其中e为自然对数的底数)恰有两个不同的实根,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知椭圆的左顶点为,过的直线交椭圆于另一点,直线交轴于点,且.
(1)求椭圆的离心率;
(2)若椭圆的焦距为,为椭圆上一点,线段的垂直平分线在轴上的截距为(不与轴重合),求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A是以BC为直径的圆O上异于B,C的动点,P为平面ABC外一点,且平面PBC⊥平面ABC,BC=3,PB=2,PC,则三棱锥P﹣ABC外接球的表面积为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列A: , ,… ().如果对小于()的每个正整数都有 < ,则称是数列A的一个“G时刻”.记“是数列A的所有“G时刻”组成的集合.
(1)对数列A:-2,2,-1,1,3,写出的所有元素;
(2)证明:若数列A中存在使得>,则 ;
(3)证明:若数列A满足- ≤1(n=2,3, …,N),则的元素个数不小于 -.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列结论中正确的个数是( )
①在中,“”是“”的必要不充分条件;
②若,的最小值为2;
③夹在圆柱的两个平行截面间的几何体是圆柱;
④数列的通项公式为,则数列的前项和.( )
A.0B.1C.2D.3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com