精英家教网 > 高中数学 > 题目详情
7.设函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上是增函数,令$a=f(cos\frac{3π}{10})$,$b=f(-\frac{π}{5})$,$c=f(tan\frac{π}{5})$,则(  )
A.b<a<cB.c<b<aC.a<b<cD.b<c<a

分析 分别确定变量的值,利用函数的奇偶性、单调性,即可得出结论.

解答 解:∵cos$\frac{3π}{10}$≈0.588,tan($\frac{π}{5}$)≈0.727,$\frac{π}{5}$≈0.628,
函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上是增函数,
∴a<b<c,
故选C.

点评 本题主要考查函数单调性定义,利用函数的奇偶性、单调性来研究对称区间上的函数值大小关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.某校同学设计了一个如图所示的“蝴蝶形图案”.其中AC,BD是过抛物线y=x2的两条相互垂直的弦(点A,B在第二象限),且AC,BD交于点$F({0,\frac{1}{4}})$,点E为y轴上的一点,记∠EFA=α,其中α为锐角:
(1)设线段AF的长为m,将m表示为关于α的函数;
(2)求“蝴蝶形图案”面积的最小值,并指出取最小值时α的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.写出三角函数诱导公式(一)~(六)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.i2017=i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<π)在一个周期上的图象如图所示,
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递减区间;
(3)若$f(\frac{α}{2}+\frac{7π}{12})=\frac{{3\sqrt{3}}}{5},α∈[-\frac{5π}{2},-2π]$,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知抛物线y2=2px(p>0)上一点M (x0,4)到焦点F 的距离|MF|=$\frac{5}{4}$x0,则直线MF 的斜率kMF=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}满足a1+a2+a3=9,a2+a8=18,数列{bn}的前n项和为Sn,且满足Sn=2bn-2.
(1)求数列{an},{bn}的通项公式;
(2)数列{cn}满足${c_n}=\frac{a_n}{b_n}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=a-\frac{2}{{{2^x}+1}}({x∈R,a∈R})$.
(1)求证:f(x)在(-∞,+∞)上是增函数;
(2)设函数f(x)存在反函数f-1(x),且f(x)是奇函数,若方程f-1(x)=log2(x+t)有实数根,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.点P是双曲线$\frac{x^2}{4}-\frac{y^2}{12}=1$上任意一点,则P到两渐近线距离的乘积是3.

查看答案和解析>>

同步练习册答案