分析 利用绝对值函数求出函数的值域,不等式|f(x)|<2a的解集不是空集转化为2a>1,求解即可.
解答 解:f(x)=2|x-3|+|x-4|,则
f(x)=$\left\{{\begin{array}{l}{3x-10,4≤x≤6}\\{x-2,3<x<4}\\{10-3x,2≤x≤3}\end{array}}\right.$所以1≤f(x)≤8,
因为不等式|f(x)|<2a的解集不是空集,
所以2a>1,a>$\frac{1}{2}$,
即a的取值范围为:($\frac{1}{2}$,+∞).
故答案为:($\frac{1}{2}$,+∞).
点评 本题考查绝对值不等式的解法,考查计算能力以及转化思想的应用.
科目:高中数学 来源: 题型:选择题
A. | (0,$\frac{1}{3}$) | B. | [0,1) | C. | [$\frac{1}{3}$,1) | D. | [1,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{3}$ | B. | $\frac{{3\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1,3) | B. | (1,2) | C. | [2,3) | D. | (3,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com