精英家教网 > 高中数学 > 题目详情

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)若交于两点,点的极坐标为,求的值.

【答案】(1) ,(2)

【解析】试题分析:(1)首先把曲线的参数方程转化为直角坐标方程,把曲线的极坐标方程转化为直角坐标方程.

(2)把曲线把曲线C1的参数方程为(t为参数),代入y=x2.得9t2﹣80t+150=0,设:t1和t2是A、B对应的参数,进一步利用根和系数的关系求出结果.

试题解析:

解:(1)曲线的普通方程为

曲线的直角坐标方程为:.

(2)的参数方程的标准形式为为参数)代入

对应的参数,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点是椭圆的左右顶点,点是椭圆的上顶点,若该椭圆的焦距为,直线的斜率之积为.

(1)求椭圆的方程;

(2)是否存在过点的直线与椭圆交于两点,使得以为直径的圆经过点?若存在,求出直线的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《数书九章》三斜求积术:“以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约一,为实,一为从隅,开平方得积”.秦九韶把三角形的三条边分别称为小斜、中斜和大斜,“术”即方法.以 分别表示三角形的面积,大斜,中斜,小斜; 分别为对应的大斜,中斜,小斜上的高;则 .若在 ,根据上述公式,可以推出该三角形外接圆的半径为__________

【答案】

【解析】根据题意可知: ,故设,由 代入可得,由余弦定理可得cosA=,所以由正弦定理得三角形外接圆半径为

型】填空
束】
17

【题目】在等差数列中,已知公差 ,且 成等比数列.

(1)求数列的通项公式

(2)求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程是,以极点为原点,极轴为轴正方向建立平面直角坐标系,曲线的参数方程是为参数).

Ⅰ)将曲线的参数方程化为普通方程;

Ⅱ)求曲线与曲线交点的极坐标

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xOy中,F(-1, 0)是椭圆的左焦点,过点F且方向向量为的光线,经直线反射后通过左顶点D.

(I)求椭圆的方程;

(II)过点F作斜率为的直线交椭圆于A, B两点,M为AB的中点,直线OM (0为原点)与直线交于点P,若满足,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年9月,国务院发布了《关于深化考试招生制度改革的实施意见》.某地作为高考改革试点地区,从当年秋季新入学的高一学生开始实施,高考不再分文理科.每个考生,英语、语文、数学三科为必考科目,并从物理、化学、生物、政治、历史、地理六个科目中任选三个科目参加高考.物理、化学、生物为自然科学科目,政治、历史、地理为社会科学科目.假设某位考生选考这六个科目的可能性相等.

(1)求他所选考的三个科目中,至少有一个自然科学科目的概率;

(2)已知该考生选考的三个科目中有一个科目属于社会科学科目,两个科目属于自然科学科目.若该考生所选的社会科学科目考试的成绩获等的概率都是0.8,所选的自然科学科目考试的成绩获等的概率都是0.75,且所选考的各个科目考试的成绩相互独立.用随机变量表示他所选的三个科目中考试成绩获等的科目数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年12月,针对国内天然气供应紧张的问题,某市政府及时安排部署,加气站采取了紧急限气措施,全市居民打响了节约能源的攻坚战.某研究人员为了了解天然气的需求状况,对该地区某些年份天然气需求量进行了统计,并绘制了相应的折线图.

(Ⅰ)由折线图可以看出,可用线性回归模型拟合年度天然气需求量 (单位:千万立方米)与年份 (单位:年)之间的关系.并且已知关于的线性回归方程是,试确定的值,并预测2018年该地区的天然气需求量;

(Ⅱ)政府部门为节约能源出台了《购置新能源汽车补贴方案》,该方案对新能源汽车的续航里程做出了严格规定,根据续航里程的不同,将补贴金额划分为三类,A类:每车补贴1万元,B类:每车补贴2.5万元,C类:每车补贴3.4万元.某出租车公司对该公司60辆新能源汽车的补贴情况进行了统计,结果如下表:

为了制定更合理的补贴方案,政府部门决定利用分层抽样的方式了解出租车公司新能源汽车的补贴情况,在该出租车公司的60辆车中抽取6辆车作为样本,再从6辆车中抽取2辆车进一步跟踪调查,求恰好有1辆车享受3.4万元补贴的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数定义在上,且可以表示为一个偶函数与一个奇函数之和,设

1)求出的解析式;

2)若对于任意恒成立,求的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设公差大于0的等差数列{an}的前n项和为Sn,已知S3=15,且a1a4a13成等比数列,记数列 的前n项和为Tn

(Ⅰ)求Tn

(Ⅱ)若对于任意的nN*,tTnan+11恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案