(本题满分12分)
已知二次函数和一次函数,其中、、满足
(1) 求证:两函数的图象交于不同的两点A、B;
(2) 求证:方程的两根都小于2;
(3)由 (1)知两函数的图象交于不同的两点A、B,求线段AB在x轴上的射影A1B1的长的取值范围。
(1)证明由消去y得ax2+2bx+c=0
Δ=4b2-4ac=4(-a-c)2-4ac=4(a2+ac+c2)
∵a+b+c=0,a>b>c,∴a>0,c<0
∴Δ>0,即两函数的图象交于不同的两点 …………………………4分
(2)由 (1)知方程有两根, 即
令
函数的图象的对称轴为
所以方程的两根均小于2 ,即的两根均小于2。………8分
(3)解设方程ax2+bx+c=0的两根为和,则
|A1B1|2=(x1-x2)2=(x1+x2)2-4x1x2
∵a>b>c,a+b+c=0,a>0,c<0 ∴a>-a-c>c,解得
∵的对称轴方程是, 时,为减函数
∴|A1B1|2∈(3,12),故|A1B1|∈()…………………………12分
科目:高中数学 来源: 题型:
π | 2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题
(本题满分12分,第1小题6分,第2小题6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题
(本题满分12分)
设函数(,为常数),且方程有两个实根为.
(1)求的解析式;
(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题
(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)
如图所示,直二面角中,四边形是边长为的正方形,,为上的点,且⊥平面
(Ⅰ)求证:⊥平面
(Ⅱ)求二面角的大小;
(Ⅲ)求点到平面的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com