精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,已知定点A(-4,0)、C(4,0),半径为r的圆M的圆心M在线段AC的垂直平分线上,且在y轴右侧,圆My轴截得的弦长为 r.

(1)求圆M的方程;(2)r变化时,是否存在定直线l与动圆M均相切?如果存在,求出定直线l的方程;如果不存在,说明理由.

【答案】(1) ;(2) 存在两条直线y=3和4x+3y-9=0与动圆M均相切.

【解析】试题分析:(1)根据圆心在弦的中垂线上求得线段AC的垂直平分线方程为y=2x+3,可知圆心在这条线上,设圆心为M(a,2a+3)再有垂径定理构造方程求解即可;(2)由直线和圆相切的性质得到=r,圆心到直线的距离为半径,再根据方程恒等得到

对应系数相等即可;

(1)由题意C(0,-2),A(-4,0),

所以线段AC的垂直平分线方程为y=2x+3.

设M(a,2a+3)(a>0),则圆M的方程为(x-a)2+(y-2a-3)2=r2.

圆心M到y轴的距离d=a,由r2=d2,得a=.

所以圆M的方程为+(y-r-3)2=r2.

(2)假设存在定直线l与动圆M均相切.当定直线的斜率不存在时,不合题意.

设直线l:y=kx+b,则=r对任意r>0恒成立.

,得r2+(k-2)(b-3)r+(b-3)2=(1+k2)r2.

所以解得

所以存在两条直线y=3和4x+3y-9=0与动圆M均相切.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了了解2013年某校高三学生的视力情况,随机抽查了一部分学生视力,将调查结果分组,分组区间为,… ,经过数据处理,得到如右频率分布表:

(1)求频率分布表中未知量的值;

(2)从样本中视力在的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区拟建立一个艺术博物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从个招标问题中随机抽取个问题,已知这个招标问题中,甲公司可正确回答其中的道題目,而乙公司能正确回答毎道题目的概率均为,甲、乙两家公司对每题的回答都是相互独立,互不影响的.

(1)求甲、乙两家公司共答对道题目的概率;

(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ).

(1)当时,讨论函数的单调区间;

(2)当时,若对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中,各棱长均为6 分别是侧棱上的点,且.

(1)在上是否存在一点,使得平面?证明你的结论;

2)求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某书店销售刚刚上市的某知名品牌的高三数学单元卷,按事先拟定的价格进行5天试销,每种单价试销1天,得到如表数据:

单价x(元)

18

19

20

21

22

销量y(册)

61

56

50

48

45

(1)求试销5天的销量的方差和yx的回归直线方程;

(2)预计今后的销售中,销量与单价服从(1)中的回归方程,已知每册单元卷的成本是14元,

为了获得最大利润,该单元卷的单价应定为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年被业界称为(虚拟现实技术)元年,未来技术将给教育、医疗、娱乐、商业、交通旅游等多领域带来极大改变,某教育设备生产企业有甲、乙两类产品,其中生产一件甲产品需团队投入15天时间, 团队投入20天时间,总费用10万元,甲产品售价为15万元/件;生产一件乙产品需团队投入20天时间, 团队投入16天时间,总费用15万元,乙产品售价为25万元/件, 两个团队分别独立运作.现某客户欲以不超过200万元订购该企业甲、乙两类产品,要求每类产品至少各3件,在期限180天内,为使企业总效益最佳,则最后交付的甲、乙两类产品数之和为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过点,并且直线平分圆.

(1)求圆的方程;

(2)若直线与圆交于两点,是否存在直线,使得为坐标原点),若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数).

(Ⅰ)写出直线的普通方程与曲线的直角坐标方程;

(Ⅱ)设曲线经过伸缩变换得到曲线,若点,直线交与 ,求 .

查看答案和解析>>

同步练习册答案