精英家教网 > 高中数学 > 题目详情

【题目】已知甲、乙、丙三位同学在某次考试中总成绩列前三名,有三位学生对其排名猜测如下::甲第一名,乙第二名;:丙第一名;甲第二名;:乙第一名,甲第三名.成绩公布后得知,三人都恰好猜对了一半,则第一名是__________

【答案】

【解析】

根据假设分析,现假设A中的说法中“甲是第一名是错误的,乙是第二名是正确的”,进而确定B的说法,即可得到答案.

由题意,假设A的说法中“甲第一名”正确,则B的说法中“丙第一名”和C说法中“乙第一名”是错误,这与B中“甲第二名”和C中“甲第三名”是矛盾的,所以是错误的;

所以A中, “甲是第一名是错误的,乙是第二名是正确的”;

又由B中,假设“丙是第一名是错误的,甲是第二名是正确的”,这与A中,“甲是第一名是错误的,乙是第二名”是矛盾的,

所以B中,假设“丙是第一名是正确的,甲是第二名是错误的”,故第一名为丙.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知复数z,(m∈R,i是虚数单位).

(1)若z是纯虚数,求m的值;

(2)设z的共轭复数,复数+2z在复平面上对应的点在第一象限,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是(

A.若数列的极限都存在,且,则数列的极限存在

B.若数列的极限都不存在,则数列的极限也不存在

C.若数列的极限都存在,则数列的极限也存在

D.,若数列的极限存在,则数列的极限也存在

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆与直线交于两点,不与轴垂直,圆.

(1)若点在椭圆上,点在圆上,求的最大值;

(2)若过线段的中点且垂直于的直线过点,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求曲线的极坐标方程和曲线的参数方程;

(2)若曲线与曲线在第一象限分别交于两点,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体中,EFPQ分别为棱的中点,则下列结论正确的是(

A.B.平面EFPQ

C.平面EFPQD.直线所成角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是边长为2的菱形,平面ABCD,且.

1)求直线AD和平面AEF所成角的大小;

2)求二面角E-AF-D的平面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等轴双曲线的右焦点为为坐标原点,过作一条渐近线的垂线且垂足为.

1)求等轴双曲线的方程;

2)若过点且方向向量为的直线交双曲线两点,求的值;

3)假设过点的动直线与双曲线交于两点,试问:在轴上是否存在定点,使得为常数,若存在,求出的坐标,若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,又点在该椭圆上.

1)求椭圆的方程;

2)若斜率为的直线与椭圆交于不同的两点,求的最大面积.

查看答案和解析>>

同步练习册答案