精英家教网 > 高中数学 > 题目详情
2.如图所示,已知A,B是单位圆上两点且|AB|=$\sqrt{3}$,设AB与x轴正半轴交于点C,α=∠AOC,β=∠OCB,则sinαsinβ+cosαcosβ=$\frac{\sqrt{3}}{2}$.

分析 利用差角的余弦公式,即可得出结论.

解答 解:由题意,∠OAC=β-α,
∵A,B是单位圆上两点且|AB|=$\sqrt{3}$,
∴sinαsinβ+cosαcosβ=cos(β-α)=cos∠OAC=$\frac{\frac{1}{2}|AB|}{1}$=$\frac{\sqrt{3}}{2}$,
故答案为$\frac{\sqrt{3}}{2}$.

点评 本题考查差角的余弦公式,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设集合A={x|a-2≤x≤2a+3,x∈R},B={x|x2-6x+5≤0}.
(1)若A∩B=B,求实数a的取值范围;
(2)若A∩∁UB=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F在x轴上,上顶点到右顶点的距离为$\sqrt{7}$,且短轴长是焦距的$\sqrt{3}$倍.
(1)求椭圆C的方程;
(2)设过原点的直线与椭圆C交于A,B两点,过椭圆C的右焦点作直线l∥AB并交椭圆C于M、N两点,是否存在常数λ,使得|AB|2=λ|MN|?若存在,请求出λ;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设集合U={n|n∈N*且n≤9},A={2,5},B={1,2,4,5},则∁U(A∪B)中元素个数为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=Asin(ωx+φ)的单调递减区间为[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z),则下列说法错误的是(  )
A.函数f(-x)的最小正周期为π
B.函数f(-x)图象的对称轴方程为x=$\frac{π}{12}$+$\frac{kπ}{2}$(k∈Z)
C.函数f(-x)图象的对称中心为($\frac{π}{6}$+$\frac{kπ}{2}$,0)(k∈Z)
D.函数f(-x)的单调递减区间为[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.函数f(x)=4sinωx•cos(ωx+$\frac{π}{6}$)+1(ω>0),其图象上有两点A(s,t),B(s+2π,t),其中-2<t<2,线段AB与函数图象有五个交点.
(Ⅰ)求ω的值;
(Ⅱ)若函数f(x)在[x1,x2]和[x3,x4]上单调递增,在[x2,x3]上单调递减,且满足等式x4-x3=x2-x1=$\frac{2}{3}$(x3-x2),求x1、x4所有可能取值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.过点A(3,5)作圆(x-2)2+(y-3)2=1的切线,则切线的方程为(  )
A.x=3或3x+4y-29=0B.y=3或3x+4y-29=0C.x=3或3x-4y+11=0D.y=3或3x-4y+11=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如果全集U={1,2,3,4,5},M={1,2,5},则∁UM=(  )
A.{1,2}B.{3,4}C.{5}D.{1,2,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知$a={log_3}0.5,b={log_{0.3}}0.2,c={0.5^{0.3}}$,则(  )
A.a>c>bB.b>c>aC.b>a>cD.c>a>b

查看答案和解析>>

同步练习册答案