精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)2sin(2xφ)(0φ2π)的图象过点(,-2)

1)求φ的值;

2)若f(),-α0,求sin(2α)的值.

【答案】(1);(2).

【解析】试题分析:(1)由图象经过点 ,求出 的值;(2)由 的值求出 的值,用二倍角公式求出 的值,再代入公式,求出 的值。

试题解析:(1)因为函数f(x)=2sin(2xφ)(0<φ<2π)的图象过点(,-2),

所以f()=2sin(πφ)=-2,

即sinφ=1.因为0<φ<2π,所以φ

(2)由(1)得,f(x)=2cos2x

因为f()=,所以cosα

又因为-α<0,所以sinα=-

所以sin2α=2sinαcosα=-,cos2α=2cos2α-1=-

从而sin(2α)=sin2αcos-cos2αsin

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中为实数.

)当时,求函数上的最大值和最小值;

)求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】徐州、苏州两地相距500千米,一辆货车从徐州匀速行驶到苏州,规定速度不得超过100千米/小时.已知货车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为0.01;固定部分为a元(a>0).
(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,汽车应以多大速度行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的各项均为正数,其前n项的和为Sn,且对任意的mn∈N*,

都有(SmnS1)2=4a2ma2n

(1)求的值;

(2)求证:{an}为等比数列;

(3)已知数列{cn},{dn}满足|cn|=|dn|=anp(p3)是给定的正整数,数列{cn},{dn}的前p项的和分别为TpRp,且TpRp,求证:对任意正整数k(1≤kp),ckdk

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(13分)如图,椭圆经过点,离心率,直线l的方程为

1)求椭圆C的方程;

2是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记的斜率分别为.问:是否存在常数,使得? 若存在,求的值; 若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人上午7时乘船出发,以匀速海里/小时港前往相距50海里的港,然后乘汽车以匀速千米/小时()自港前往相距千米的市,计划当天下午4到9时到达市.设乘船和汽车的所要的时间分别为小时,如果所需要的经费 (单位:元)

(1)试用含有的代数式表示

(2)要使得所需经费最少,求的值,并求出此时的费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l经过点P(﹣2,5),且斜率为﹣
(1)求直线l的方程;
(2)若直线m与l平行,且点P到直线m的距离为3,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数y=f(x),若在其定义域内存在x0 , 使得x0f(x0)=1成立,则称x0为函数f(x)的“反比点”.下列函数中具有“反比点”的是
①f(x)=﹣2x+2; ②f(x)=sinx,x∈[0,2π];
③f(x)=x+ , x∈(0,+∞);④f(x)=ex; ⑤f(x)=﹣2lnx.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将圆为参数)上的每一点的横坐标保持不变,纵坐标变为原来的倍,得到曲线

(1)求出的普通方程;

(2)设直线 的交点为 ,以坐标原点为极点, 轴正半轴为极轴建立极坐标系,求过线段的中点且与垂直的直线的极坐标方程.

查看答案和解析>>

同步练习册答案