【题目】如图O是等腰三角形ABC内一点,圆O与△ABC的底边BC交于M,N两点,与底边上的高交于点G,且与AB,AC分别相切于E,F两点.
(1)(I)证明EF//BC
(2)(II)若AG等于圆O半径,且AE=MN=2,求四边形EBCF的面积
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,底面ABCD是菱形, ,PA=PD,F为AD的中点,PD⊥BF.
(1)求证:AD⊥PB;
(2)若菱形ABCD的边长为6,PA=5,求四面体PBCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在几何体ABCDEF中,四边形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3.
(1)证明:平面ACF⊥平面BEFD
(2)若二面角A﹣EF﹣C是二面角,求直线AE与平面ABCD所成角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=lnx+a(1-x),问:(1)讨论f(x) 的单调性;(2)当 f(x)有最大值,且最大值大于2a-2 时,求a的取值范围.
(1)(I)讨论f(x) 的单调性;
(2)(II)当 f(x)有最大值,且最大值大于2a-2 时,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据 用户对其产品的满意度的评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频率分布表.A地区用户满意度评分的频率分布直方图
B地区用户满意度评分的频率分布表
满意度评分分组 | [50,60) | [50,60) | [50,60) | [50,60) | [50,60) |
频数 | 2 | 8 | 14 | 10 | 6 |
(1)(I)在答题卡上作出B地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分 散 程度.(不要求计算出具体值,给出结论即可)
B地区用户满意度评分的频率分布直方图
(2)(II)根据用户满意度评分,将用户的满意度评分分为三个等级:
满意度评分 | 低于70分 | 70分到89分 | 不低于90分 |
满意度等级 | 不满意 | 满意 | 非常满意 |
估计那个地区的用户的满意度等级为不满意的概率大,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2015新课标II)在直角坐标系xoy中,曲线C1:(t为参数,t≠0),其中0,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:=2sin,C3:=2cos
(1)(Ⅰ)求C2与C1交点的直角坐标
(2)(Ⅱ)若C2与C1相交于点A,C3与C1相交于点B,求|AB|的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱台上、下底面分别是边长为3和6的正方形,,且
底面,点,分别在棱,上.
(1)若是是的中点,证明:;
(2若//平面,二面角的余弦值为,求四面体的体积
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2015·江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为了l1, l2 , 山区边界曲线为C , 计划修建的公路为l , 如图所示,M , N为C的两个端点,测得点M到l1, l2 的距离分别为5千米和40千米,点N到l1, l2的距离分别为20千米和2.5千米,以l1, l2所在的直线分别为x , y轴,建立平面直角坐标系xOy , 假设曲线C符合函数y=(其中a , b为常数)模型.
(1)求a , b的值;
(2)设公路l与曲线C相切于P点,P的横坐标为t.
①请写出公路l长度的函数解析式f(t),并写出其定义域;
②当t为何值时,公路l的长度最短?求出最短长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com