精英家教网 > 高中数学 > 题目详情
(2013•昌平区一模)已知每项均是正整数的数列a1,a2,a3,…a100,其中等于i的项有ki个(i=1,2,3…),设bj=k1+k2+…+kj(j=1,2,3…),g(m)=b1+b2+…+bm-100m(m=1,2,3…).
(Ⅰ)设数列k1=40,k2=30,k3=20,k4=10,k5=…=k100=0,
①求g(1),g(2),g(3),g(4);
②求a1+a2+a3+…+a100的值;
(Ⅱ)若a1,a2,a3,…a100中最大的项为50,比较g(m),g(m+1)的大小.
分析:(I)①因为数列k1,k2,k3,k4的值已知,所以b1,b2,b3,b4由公式bj=k1+k2+…kj(j=1,2,3…)求得,所以g(1),g(2),g(3),g(4)由公式g(m)=b1+b2+…bm-100m(m=1,2,3…)求得;
②a1+a2+a3+…+a100=40×1+30×2+20×3+10×4=200;
(II)由题意,g(m)=b1+b2+…bm-100m,g(m+1)=b1+b2+…bm+bm+1-100(m+1),作差比较,得g(m+1)-g(m)=bm+1-100,由bj的含义,知bm+1≤100,故得g(m+1),g(m)的大小,又a1,a2,a3,…,a100中最大的项为50,知当m≥50时bm=100,所以,当1<m<49时,有g(m)>g(m+1);当m≥49时,有g(m)=g(m+1);
解答:解:(I)①因为数列k1=40,k2=30,k3=20,k4=10,所以b1=40,b2=70,b3=90,b4=100,
所以:g(1)=-60,g(2)=-90,g(3)=-100,g(4)=-100;
②a1+a2+a3+…+a100=40×1+30×2+20×3+10×4=200;
(II)一方面,g(m+1)-g(m)=bm+1-100,根据bj的含义,知bm+1≤100,
故g(m+1)-g(m)≤0,即g(m)≥g(m+1),
当且仅当bm+1=100时取等号.
因为a1,a2,a3,…,a100中最大的项为50,所以当m≥50时必有bm=100,
所以g(1)>g(2)>…>g(49)=g(50)=g(51)=…
即当1<m<49时,有g(m)>g(m+1);
当m≥49时,有g(m)=g(m+1).
点评:本题考查了数列知识的综合应用,解题时要认真审题,弄清题目中所给的条件是什么,细心解答,这样才不会出现错误.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•昌平区一模)复数
2i
1-i
的虚部是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•昌平区一模)已知函数f(x)=
1
3
x3-a2x+
1
2
a
(a∈R).
(Ⅰ)若a=1,求函数f(x)在[0,2]上的最大值;
(Ⅱ)若对任意x∈(0,+∞),有f(x)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•昌平区一模)设定义域为R的函数f(x)满足以下条件;则以下不等式一定成立的是(  )
(1)对任意x∈R,f(x)+f(-x)=0;
(2)对任意x1,x2∈[1,a],当x2>x1时,有f(x2)>f(x1).
①f(a)>f(0)
②f(
1+a
2
)>f(
a

③f(
1-3a
1+a
)>f(-3)
④f(
1-3a
1+a
)>f(-a)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•昌平区一模)为了解甲、乙两厂的产品的质量,从两厂生产的产品中随机抽取各10件,测量产品中某种元素的含量(单位:毫克).下表是测量数据的茎叶图:
规定:当产品中的此种元素含量满足≥18毫克时,该产品为优等品.
(Ⅰ)试用上述样本数据估计甲、乙两厂生产的优等品率;
(Ⅱ)从乙厂抽出的上述10件产品中,随机抽取3件,求抽到的3件产品中优等品数ξ的分布列及其数学期望E(ξ);
(Ⅲ)从上述样品中,各随机抽取3件,逐一选取,取后有放回,求抽到的优等品数甲厂恰比乙厂多2件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•昌平区一模)已知椭圆M的对称轴为坐标轴,离心率为
2
2
,且抛物线y2=4
2
x
的焦点是椭圆M的一个焦点.
(Ⅰ)求椭圆M的方程;
(Ⅱ)设直线l与椭圆M相交于A、B两点,以线段OA,OB为邻边作平行四边形OAPB,其中点P在椭圆M上,O为坐标原点.求点O到直线l的距离的最小值.

查看答案和解析>>

同步练习册答案