【题目】已知长方体ABCD﹣A1B1C1D1中,AB=4,BC=3,AA1=5,则异面直线BD1与AC所成角的余弦值为 .
【答案】
【解析】解:建立如图坐标系,∵在长方体ABCD﹣A1B1C1D1中,AB=4,BC=3,AA1=5,
∴D1(0,0,5),B(3,4,0),
A(3,0,0),C(0,4,0),
∴ =(﹣3,﹣4,5), =(﹣3,4,0).
∴cos< , >= =﹣ .
∴AC与BD1所成角的余弦值 .
所以答案是: .
【考点精析】本题主要考查了异面直线及其所成的角的相关知识点,需要掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知
x | |||||
2x+ | |||||
sin(2x+ ) | |||||
f(x) |
(1)用五点法完成下列表格,并画出函数f(x)在区间 上的简图;
(2)若 ,函数g(x)=f(x)+m的最小值为2,试求处函数g(x)的最大值,指出x取值时,函数g(x)取得最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点;
(I)求异面直线A1B,AC1所成角的余弦值;
(II)求直线AB1与平面C1AD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,AB⊥AC,AB⊥PA,AB∥CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.求证:平面EFG⊥平面EMN.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD的底面ABCD是正方形,PA⊥平面ABCD,PA=AB=2.
(1)若E,F分别是PC,AD的中点,证明:EF∥平面PAB;
(2)若E是PC的中点,F是AD上的动点,问AF为何值时,EF⊥平面PBC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=ax2+2x+c的对称轴为x=1,g(x)=x+ (x>0).
(1)求函数g(x)的最小值及取得最小值时x的值;
(2)试确定c的取值范围,使g(x)﹣f(x)=0至少有一个实根;
(3)若F(x)=﹣f(x)+4x+c,存在实数t,对任意x∈[1,m],使F(x+t)≤3x恒成立,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com