精英家教网 > 高中数学 > 题目详情

【题目】如图,在矩形ABCD中,AB=3,BC=2,点MN分别是边ABCD上的点,且MNBC.若将矩形ABCD沿MN折起使其形成60°的二面角(如图).

(1)求证:平面CND⊥平面AMND

(2)求直线MC与平面AMND所成角的正弦值.

【答案】1)见解析;(2.

【解析】

1)转化为证明MN⊥平面CND;(2)过点CCHND与点H,则MHMC在平面AMND内的射影,所以∠CMH即直线MC与平面AMND所成的角.

1)∵在矩形ABCD中,MNBC

MNNDMNNC

又∵NDNC是平面CND内的两条相交直线,

MN⊥平面CND,又MN平面AMND

∴平面CND⊥平面AMND.

2)由(1)知∠CND=60°,

AB=3,BC=2,MNBC

所以CN=1,DN=2,

由余弦定理得

所以∠DCN=90°,

过点CCHND与点H,连接MH

则∠CMH即直线MC与平面AMND所成的角,

所以

故直线MC与平面AMND所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

(1)请作出该函数在长度为一个周期的闭区间的大致图象;

(2)试判断该函数的奇偶性,并运用函数的奇偶性定义说明理由;

(3)求该函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.

1)求的单调区间;

2)求[-5 ]的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C方程:+=1(a>b>0),M(x0 , y0)是椭圆C上任意一点,F(c,0)是椭圆的右焦点.
(1)若椭圆的离心率为e,证明|MF|=a﹣ex0
(2)已知不过焦点F的直线l与圆x2+y2=b2相切于点Q,并与椭圆C交于A,B两点,且A,B两点都在y轴的右侧,若a=2,求△ABF的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如图.记成绩不低于90分者为“成绩优秀”.

(1)在乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的2个均成绩优秀的概率;

(2)由以上统计数据作出列联表,并判断能否在犯错误的概率不超过0.1的前提下认为:“成绩优秀”与教学方式有关.

0.400

0.250

0.150

0.100

0.050

0.025

0.708

1.323

2.072

2.706

3.841

5.024

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)

(1)应收集多少位女生样本数据?

(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.

(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有的把握认为该校学生的每周平均体育运动时间与性别有关.

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查患胃病是否与生活规律有关,在某地对岁以上的人进行了调查,结果是:患胃病者生活不规律的共人,患胃病者生活规律的共人,未患胃病者生活不规律的共人,未患胃病者生活规律的共人.

(1)根据以上数据列出列联表;

(2)能否在犯错误的概率不超过的前提下认为“岁以上的人患胃病与否和生活规律有关系?”

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形所在平面与以为直径的圆所在平面垂直,中点,是圆周上一点,且

1)求异面直线所成角的余弦值;

2)设点是线段上的点,且满足,若直线平面,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别为△ABC三个内角A,B,C所对的边长,且acosB﹣bcosA= c.
(Ⅰ)求 的值;
(Ⅱ)若A=60°,求 的值.

查看答案和解析>>

同步练习册答案