精英家教网 > 高中数学 > 题目详情
20.已知$\sqrt{m}$+$\frac{1}{\sqrt{m}}$=3,求下列各式的值
(1)m+m-1
(2)m2+m-2

分析 (1)由($\sqrt{m}$+$\frac{1}{\sqrt{m}}$)2=m+m-1+3,能求出m+m-1的值.
(2)由(m+m-12=m2+m-2+2,能求出m2+m-2的值.

解答 解:(1)∵$\sqrt{m}$+$\frac{1}{\sqrt{m}}$=3,
∴($\sqrt{m}$+$\frac{1}{\sqrt{m}}$)2=m+m-1+2=9,
∴m+m-1=9-2=7.
(2)∵(m+m-12=m2+m-2+2=49,
∴m2+m-2=49-2=47.

点评 本题考查代数式求值,是基础题,解题时要认真审题,注意完全平方和公式、有理数指数幂性质及运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.函数f(x)=tan(2x-$\frac{π}{4}$)的最小正周期是$\frac{π}{2}$;不等式f(x)>1的解集是$\{x|\frac{kπ}{2}+\frac{π}{4}<x<\frac{kπ}{2}+\frac{3π}{8},k∈Z\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知圆O:x2+y2=a2(a>0),点A(0,4),B(2,2).
(1)若线段AB的中垂线与圆O相切,求实数a的值;
(2)过直线AB上的点P引圆O的两条切线,切点为M,N,若∠MPN=60°,则称点P为“好点”.若直线AB上有且只有两个“好点”,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=log3(x2-2x)<0的单调递减区间是(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=2x-1在(1,2)内的平均变化率为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知cosα,sinα是函数f(x)=x2-tx+t(t∈R)的两个零点,则sin2α=(  )
A.2-2$\sqrt{2}$B.2$\sqrt{2}$-2C.$\sqrt{2}$-1D.1-$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1),x>0}\\{{2}^{-x}-1,x≤0}\end{array}\right.$,则f[f(-2)]=2;若f(x0)<3,则x0的取值范围是(-2,7).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设P,Q是两个非空集合,定义集合间的一种运算“?”:P?Q={x|x∈P∪Q且x∉P∩Q}.如果P={x|0≤x≤2},Q={x|x>1},则P?Q=(  )
A.[0,1)∪(2,+∞)B.[0,1]∪(2,+∞)C.[1,2]D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数b满足$2f({log_2}b)+f({log_{\frac{1}{2}}}b)≤3f(1)$,则实数b的取值范围是$[{\frac{1}{2},2}]$.

查看答案和解析>>

同步练习册答案