分析 (1)根据定义在R上奇函数满足f(0)=0可得b值,进而再由f(1)=-f(-1)可得a值,利用奇函数的定义检验后可得答案;
(2)由(1)知f(x)=$\frac{-{2}^{x}+1}{{2}^{x+1}+2}$=$\frac{1}{4}$,解指数方程可得答案.
解答 解:(1)因为f(x)是奇函数,且定义域为R,所以f(0)=0,…(2分)
即$\frac{-1+b}{2+a}$=0,解得b=1.…(4分)
从而有f(x)=$\frac{-{2}^{x}+1}{{2}^{x+1}+a}$,
又由f(1)=-f(-1)知:
$\frac{-2+1}{4+a}$=-$\frac{-\frac{1}{2}+1}{1+a}$,
解得a=2.…(8分)
∴a=2,b=1(经检验适合题意).…(9分)
(2)由(1)知f(x)=$\frac{-{2}^{x}+1}{{2}^{x+1}+2}$=$\frac{1}{4}$,
则${2^x}=\frac{1}{3}$,
解得$x={log_2}\frac{1}{3}$…(14分)
点评 本题考查的知识点是函数奇偶性的性质,熟练掌握函数奇偶性的性质是解答的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com