【题目】函数的定义域为D,若存在闭区间,使得函数满足以下两个条件:(1)在[m,n]上是单调函数;(2)在[m,n]上的值域为[2m,2n],则称区间[m,n]为的“倍值区间”.下列函数中存在“倍值区间”的有( )个.
①②③
A.0B.1C.2D.3
【答案】C
【解析】
①②两个函数都是单调递增函数,假设存在“倍值区间”,转化为判断在定义域内是否有两个不等实根;③在单调递减,在单调递增,分两个区间讨论是否存在“倍值区间”.
①是增函数,若存在区间是函数的“倍值区间”,
则 ,即 有两个实数根,分别是, ,即存在“倍值区间”,故①存在;
②是单调递增函数,若存在区间是函数的“倍值区间”,
则,即,存在两个不同的实数根,分别是, ,即存在“倍值区间”,故②存在;
③ ,在单调递减,在单调递增,
若在区间单调递减,则 ,解得,不成立,
若在区间 单调递增,则,即有两个不同的大于1的正根,
解得:不成立,故③不存在.
存在“倍值区间”的函数是①②.
故选:C.
科目:高中数学 来源: 题型:
【题目】已知B岛在A岛正东方向距离12km处,C岛在A岛北偏东方向相离8km处.某船从A岛出发向B岛驶去,并在与B,C距离相等处待命.
(1)求此船航行的距离(精确到0.1km).
(2)若此船在待命处接到命令,以最少的时间行驶到C岛,则此船应沿什么方向行驶?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,,给定下列命题:
①若方程有两个不同的实数根,则;
②若方程恰好只有一个实数根,则;
③若,总有恒成立,则;
④若函数有两个极值点,则实数.
则正确命题的个数为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C经过点,两点,且圆心C在直线上.
(1)求圆C的方程;
(2)设,对圆C上任意一点P,在直线MC上是否存在与点M不重合的点N,使是常数,若存在,求出点N坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为椭圆:的右焦点,椭圆上任意一点 到点的距离与点到直线:
的距离之比为。
(1)求直线方程;
(2)设为椭圆的左顶点,过点的直线交椭圆于、两点,直线、与直线分别相交于、两点,以为直径的圆是否恒过一定点?若是,求出定点坐标;若不是,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com