精英家教网 > 高中数学 > 题目详情
2.设函数f(x)=(x-2)lnx-ax+1,若存在唯一的整数x0,使得f(x0)<0,则a的取值范围是(  )
A.(0,$\frac{1+ln3}{3}$)B.($\frac{1}{2}$,$\frac{1+ln3}{3}$]C.($\frac{1+ln3}{3}$,1)D.[$\frac{1+ln3}{3}$,1)

分析 设g(x)=(x-2)lnx,h(x)=ax-1,问题转化为存在唯一的整数x0使得g(x0)在直线y=ax-1的下方,求导数判断单调性,数形结合可得g(1)≥h(1)=a-1且h(3)=3a-1≤g(3)=ln3,h(2)>g(2),解关于a的不等式组可得.

解答 解:设g(x)=(x-2)lnx,h(x)=ax-1,
由题意知存在唯一的整数x0使得g(x0)在直线y=h(x)=ax-1的下方,
∵g′(x)=lnx+1-$\frac{2}{x}$,
∴当x≥2时,g′(x)>0,当0<x≤1时,g′(x)<0,
当x=1时,g(1)=0,当x=1时,h(1)=a-1<0,即a≤1.
直线y=ax-1恒过定点(0,-1)且斜率为a,
由题意结合图象可知,存在唯一的整数x0=2,f(x0)<0,
故h(2)=2a-1>g(2)=0,h(3)=3a-1≤g(3)=ln3,解得$\frac{1}{2}$<a≤$\frac{1+ln3}{3}$.
故选:B.

点评 本题考查导数的运用:判断单调性,涉及数形结合和转化的思想,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.设f(x)是定义在R上的偶函数,且f(2+x)=f(2-x),当x∈[0,2]时,f(x)=($\sqrt{2}$)x-1,若关于x的方程f(x)-loga(x+2)=0(a>0且a≠1)在区间(-2,6)内恰有4个不等的实数根,则实数a的取值范围是(  )
A.($\frac{1}{4}$,1)B.(1,4)C.(1,8)D.(8,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,△ABC是边长为1正三角形,CD=DA=$\frac{{\sqrt{3}}}{3}$,AC与BD的交点为M,点N在线段PB上,且PN=$\frac{1}{2}$.若二面角A-BC-P的正切值为2$\sqrt{2}$.
(I)求证:MN∥平面PDC;
(Ⅱ)求平面DCP与平面ABP所成的锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.有一个棱长为1的正方体,对称中心在原点且每一个面都平行于坐标平面,给出以下各点:A(1,0,1),B(-1,0,1),C($\frac{1}{3}$,$\frac{1}{3}$,$\frac{1}{5}$),D($\frac{1}{5}$,$\frac{1}{2}$,$\frac{1}{2}$),E($\frac{2}{5}$,-$\frac{1}{2}$,0),F(1,$\frac{1}{2}$,$\frac{1}{3}$),则位于正方体之外的点是A,B,F.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=2x+alnx.
(1)求函数f(x)的单调递增区间;
(2)若不等式f(x)≥(a+3)x在(0,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某商店销售一种商品,售价比进价高20%以上才能出售,为了获得更多利润,店方以高出进价80%的价格标价,若你想买下标价为360元的这种商品,最多降价多少元,商店才能出售?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在正项数列{an}中,a1=$\frac{1}{3}$,an+1=an+($\frac{{a}_{n}}{n}$)2(n∈N*
(1)判断数列{an}的单调性,并证明你的结论;
(2)求证:对n∈N*都有:$\frac{1}{3}$≤an<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.△ABC的顶点坐标分别为点A(-1,2),B(3,1),C(2,-3),判断△ABC是否为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知三点A($\sqrt{3}+1$,1),B(1,1),C(1,2),则<$\overrightarrow{CA}$,$\overrightarrow{CB}$>=$\frac{π}{3}$.

查看答案和解析>>

同步练习册答案