分析 (1)由ρ2=x2+y2,ρcosθ=x,ρsinθ=y,能求出曲线C的直角坐标方程,由直线经过点P(1,2),倾斜角为$\frac{π}{6}$,能求出直线的参数方程.
(2)将直线l的参数方程代入曲线C的直角坐标方程,得${t}^{2}-(\sqrt{3}-1)t-3=0$,由此能求出|PA|•|PB|的值.
解答 解:(1)∵曲线C的极坐标方程是ρ2-4ρcosθ-2psinθ=0,
∴曲线C的直角坐标方程为x2+y2-4x-2y=0,即(x-2)2+(y-1)2=5.
∵直线经过点P(1,2),倾斜角为$\frac{π}{6}$.
∴直线的参数方程为$\left\{\begin{array}{l}{x=1+tcos\frac{π}{6}}\\{y=2+tsin\frac{π}{6}}\end{array}\right.$,即$\left\{\begin{array}{l}{x=1+\frac{\sqrt{3}}{2}t}\\{y=2+\frac{1}{2}t}\end{array}\right.$,t为参数.
(2)将直线l的参数方程代入曲线C的直角坐标方程,
得($\frac{\sqrt{3}}{2}t-1$)2+(1+$\frac{1}{2}t$)2=5,
整理,得${t}^{2}-(\sqrt{3}-1)t-3=0$,
∴|PA|•|PB|=|t1|•|t2|=|t1•t2|=|-3|=3.
点评 本题考查曲线的直角坐标方程和直线的参数方程的求法,考查两线段乘积的求法,是基础题,解题时要认真审题,注意参数方程、普通方程、极坐标方程的互化公式的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充分且必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com