精英家教网 > 高中数学 > 题目详情

中,角A,B,C所对的边分别为
(Ⅰ)叙述并证明正弦定理;
(Ⅱ)设,求的值.

(Ⅰ)证明见解析;(Ⅱ) .

解析试题分析:(Ⅰ)正弦定理:,利用三角形的外接圆证明正弦定理. 设的外接圆的半径为,连接并延长交圆于点,则,直径所对的圆周角,在直角三角形中,,从而得到,同理可证,则正弦定理得证;(Ⅱ)先由正弦定理将化为①,再依据和差化积公式,同角三角函数间的关系,特殊角的三角函数值将①式化简,得到,则,再由二倍角公式求解.
试题解析:(Ⅰ) 正弦定理:.
证明:设的外接圆的半径为,连接并延长交圆于点,如图所示:

,在中,,即,则有,同理可得,所以.
(Ⅱ)∵,由正弦定理得,



解得
.
考点:1.正弦定理;2.解三角形;3.同角三角函数间的关系;4.和差化积公式;5.二倍角公式

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

中,已知.
(1)求证:;
(2)若求角A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

)在△中,角所对的边分别为,且.
(1)求的值;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知锐角中,角所对的边分别为,已知
(Ⅰ)求的值;
(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知角的顶点在原点,始边与轴的正半轴重合,终边经过点.
(Ⅰ)求的值;
(Ⅱ)若函数,求函数在区间上的取值范围. 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的最大值为,其图像相邻两条对称轴之间的距离为.
(Ⅰ)求函数的解析式;
(Ⅱ)设,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当为何值时,取得最大值,并求出其最大值;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象(部分)如图所示.

(1)试确定的解析式;
(2)若,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,三个内角所对的边分别为已知.
(1)求
(2)设的值.

查看答案和解析>>

同步练习册答案