精英家教网 > 高中数学 > 题目详情
设a≥0,f(x)=x-1-ln2x+2alnx(x>0).
(Ⅰ)令F(x)=xf′(x),讨论F(x)在(0,+∞)内的单调性并求极值;
(Ⅱ)求证:当x>1时,恒有x>ln2x-2alnx+1.
分析:(1)先根据求导法求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间及极值即可.
(2)欲证x>ln2x-2a ln x+1,即证x-1-ln2x+2alnx>0,也就是要证f(x)>f(1),根据第一问的单调性即可证得.
解答:解:(Ⅰ)根据求导法则有f′(x)=1-
2lnx
x
+
2a
x
,x>0

故F(x)=xf'(x)=x-2lnx+2a,x>0,
于是F′(x)=1-
2
x
=
x-2
x
,x>0

∴知F(x)在(0,2)内是减函数,在(2,+∞)内是增函数,
所以,在x=2处取得极小值F(2)=2-2ln2+2a.
(Ⅱ)证明:由a≥0知,F(x)的极小值F(2)=2-2ln2+2a>0.
于是知,对一切x∈(0,+∞),恒有F(x)=xf'(x)>0.
从而当x>0时,恒有f'(x)>0,故f(x)在(0,+∞)内单调增加.
所以当x>1时,f(x)>f(1)=0,即x-1-ln2x+2alnx>0.
故当x>1时,恒有x>ln2x-2alnx+1.
点评:本题主要考查学生综合运用导数知识分析问题、解决问题的能力,本小题主要考查函数的导数,单调性,不等式等基础知识.
练习册系列答案
相关习题

科目:高中数学 来源:安徽 题型:解答题

设a≥0,f (x)=x-1-ln2x+2a ln x(x>0).
(Ⅰ)令F(x)=xf'(x),讨论F(x)在(0.+∞)内的单调性并求极值;
(Ⅱ)求证:当x>1时,恒有x>ln2x-2a ln x+1.

查看答案和解析>>

科目:高中数学 来源:0103 月考题 题型:解答题

设a≥0,f (x)=x-1-ln2x+2a ln x(x>0)。
(1)令F(x)=xf′(x),讨论F(x)在(0,+∞)内的单调性并求极值;
(2)求证:当x>1时,恒有x>ln2x-2aln x+1。

查看答案和解析>>

科目:高中数学 来源:安徽省高考真题 题型:解答题

设a≥0,f (x)=x-1-ln2x+2a ln x(x>0)。
(1)令F(x)=xf'(x),讨论F(x)在(0,+∞)内的单调性并求极值;
(2)求证:当x>1时,恒有x>ln2x-2aln x+1。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省沈阳二中等重点中学协作体高考预测数学试卷11(理科)(解析版) 题型:解答题

设a≥0,f (x)=x-1-ln2x+2a ln x(x>0).
(Ⅰ)令F(x)=xf'(x),讨论F(x)在(0.+∞)内的单调性并求极值;
(Ⅱ)求证:当x>1时,恒有x>ln2x-2a ln x+1.

查看答案和解析>>

同步练习册答案