精英家教网 > 高中数学 > 题目详情
11.已知圆C:x2+y2-8x-8y+30=0,过曲线y=$\frac{1}{x}(x>0)$上的点P作圆C的切线,设点A为一个切点,则|PA|的最小值是2$\sqrt{3}$.

分析 要使|PA|最小,需圆心C(4,4)与点P的距离最小,而CP=$\sqrt{(x-4)^{2}+(y-4)^{2}}$=$\sqrt{(x+\frac{1}{x}-4)^{2}+14}$≥$\sqrt{14}$,可得|PA|的最小值.

解答 解:圆C:x2+y2-8x-8y+30=0,可化为(x-4)2+(y-4)2=2
要使|PA|最小,需圆心C(4,4)与点P的距离最小,
而CP=$\sqrt{(x-4)^{2}+(y-4)^{2}}$=$\sqrt{(x+\frac{1}{x}-4)^{2}+14}$≥$\sqrt{14}$
故|PA|的最小值为$\sqrt{14-2}$=2$\sqrt{3}$,
故答案为:2$\sqrt{3}$.

点评 本题主要考查直线和圆相切的性质,两点间的距离公式的应用,体现了转化的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.在某样本的频率分布直方图中,共有7个小长方形,若第三个小长方形的面积为其他6个小长方形的面积和的$\frac{1}{4}$,且样本容量为100,则第三组数据的频数为(  )
A.25B.0.2C.0.25D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.矩形ABCD的顶点A,B在直线y=2x+m上,C,D在抛物线y2=4x上,该矩形的外接圆方程为x2+y2-x-4y-t=0.
(1)求矩形ABCD对角线交点M的坐标;
(2)求此矩形的长,并求m,t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设全集U是实数集R,M={x|2x≥4},N={x|1<x<3},则集合M∩N是(  )
A.{x|2<x<3}B.{x|2≤x<3}C.{x|1<x≤2}D.{x|x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.定义在[-2,2]上的奇函数f(x)在区间[-2,0]上单调递减,则不等式f(1-x)+f(-x)<0的解集为[-1,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=$\frac{2}{{e}^{x}+1}$在点(0,1)处切线的斜率为(  )
A.-2B.2C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.数列{an}的前n项和Sn满足Sn=2an-a1,且a1,a2+1,a3成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{{a}_{n+1}}{{S}_{n}{S}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知△ABC的内角A、B、C对的边分别为a、b、c,若b=3,2c=a+3$\sqrt{2}$,则cosC最小值为$\frac{\sqrt{6}-\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在椭圆$\frac{{x}^{2}}{2}$+y2=1中,弦长为2的弦的中点的轨迹方程为10x4y2-8x2y4-3x6-8y4-4x2y2=0(-$\sqrt{2}$<x<$\sqrt{2}$).

查看答案和解析>>

同步练习册答案