【题目】已知集合Z={(x,y)|x∈[0,2],y∈[-1,1]}.
(1)若x,y∈Z,求x+y≥0的概率;
(2)若x,y∈R,求x+y≥0的概率.
【答案】(1) (2)
【解析】
试题分析:(1)因为x,y∈Z,且x∈[0,2],y∈[-1,1],基本事件是有限的,所以为古典概型,这样求得总的基本事件的个数,再求得满足x,y∈Z,x+y≥0的基本事件的个数,然后求比值即为所求的概率;(2)因为x,y∈R,且围成面积,则为几何概型中的面积类型,先求x,y∈Z,求x+y≥0表示的区域的面积,然后求比值即为所求的概率
试题解析:(1)设“x+y≥0,x,y∈Z”为事件A,x,y∈Z,x∈[0,2],即x=0,1,2;y∈[-1,1],即y=-1,0,1.
则基本事件有:(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),(2,-1),(2,0),(2,1)共9个.其中满足“x+y≥0”的基本事件有8个,∴P(A)=.
故x,y∈Z,x+y≥0的概率为.
(2)设“x+y≥0,x,y∈R”为事件B,
∵x∈[0,2],y∈[-1,1],则
基本事件为如图四边形ABCD区域,事件B包括的区域为其中的阴影部分.
∴P(B)====,故x,y∈R,x+y≥0的概率为.
科目:高中数学 来源: 题型:
【题目】设为坐标原点,已知椭圆的离心率为,抛物线的准线方程为.
(1)求椭圆和抛物线的方程;
(2)设过定点的直线与椭圆交于不同的两点,若在以为直径的圆的外部,求直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了对某课题进行研究,用分层抽样方法从三所高校的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)
高校 | 相关人数 | 抽取人数 |
A | 18 | |
B | 36 | 2 |
C | 54 |
(Ⅰ)求,;
(Ⅱ)若从高校抽取的人中选2人作专题发言,求这二人都来自高校的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】语文成绩服从正态分布,数学成绩的频率分布直方图如下:
(I)如果成绩大于135的为特别优秀,这500名学生中本次考试语文、数学特别优秀的大约各多少人?(假设数学成绩在频率分布直方图中各段是均匀分布的)
(II)如果语文和数学两科都特别优秀的共有6人,从(I)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有人,求的分布列和数学期望.
(附参考公式)若,则,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题P;实数x满足x2-4ax+3a2<0,其中a>0;命题q:实数x满足x2-5x+6≤0
(1)若a=1,且为真命题,求实数x的取值范围。
(2)若p是q成立的必要不充分条件,求实数a 的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知y=f(x)是定义在R上的奇函数,且x<0时,f(x)=1+2x.
(1)求函数f(x)的解析式;
(2)画出函数f(x)的图像;
(3)写出函数f(x)的单调区间及值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:数列对一切正整数均满足,称数列为“凸数列”,以下关于“凸数列”的说法:
①等差数列一定是凸数列;
②首项,公比且的等比数列一定是凸数列;
③若数列为凸数列,则数列是单调递增数列;
④若数列为凸数列,则下标成等差数列的项构成的子数列也为凸数列.
其中正确说法的序号是_____________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com