精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
lnx
x

(I)判断函数f(x)的单调性;
(Ⅱ)若y=xf(x)+
1
x
的图象总在直线y=a的上方,求实数a的取值范围;
(Ⅲ)若函数f(x)与g(x)=
1
6
x-
m
x
+
2
3
的图象有公共点,且在公共点处的切线相同,求实数m的值.
分析:(1)先对函数f(x)=
lnx
x
进行求导运算,根据导函数大于0时原函数单调递增,导函数小于0时原函数单调递减,可求得单调区间.
(2)将将函数f(x)的解析式代入,可将问题转化为不等式a<lnx+
1
x
对于x>0恒成立,然后g(x)=lnx+
1
x
后进行求导,根据导函数的正负情况判断函数的单调性进而可得到函数g(x)的最小值,从而得到答案.
(3)将函数f(x)与g(x)=
1
6
x-
m
x
+
2
3
的图象有公共点转化为lnx=
1
6
x2+
2
3
x-m
有解,再由y=lnx与y=
1
6
x2+
2
3
x-m
在公共点(x0,y0)处的切线相同可得到
lnx0=
1
6
x
2
0
+
2
3
x0-m
1
x0
=
1
3
x0+
2
3
同时成立,进而可求出x0的值,从而得到m的值.
解答:解:(Ⅰ)可得f(x)=
1-lnx
x2

当0<x<e时,f′(x)>0,f(x)为增函数;当e<x时,f′(x)<0,f(x)为减函数.
(Ⅱ)依题意,转化为不等式a<lnx+
1
x
对于x>0恒成立
令g(x)=lnx+
1
x
,则g'(x)=
1
x
-
1
x2
=
1
x
(1-
1
x
)

当x>1时,因为g'(x)=
1
x
(1-
1
x
)
>0,g(x)是(1,+∞)上的增函数,
当x∈(0,1)时,g′(x)<0,g(x)是(0,1)上的减函数,
所以g(x)的最小值是g(1)=1,
从而a的取值范围是(-∞,1).
(Ⅲ)转化为lnx=
1
6
x2+
2
3
x-m
,y=lnx与y=
1
6
x2+
2
3
x-m
在公共点(x0,y0)处的切线相同
由题意知
lnx0=
1
6
x
2
0
+
2
3
x0-m
1
x0
=
1
3
x0+
2
3

∴解得:x0=1,或x0=-3(舍去),代入第一式,即有m=
5
6
点评:本题主要考查函数的单调性与其导函数的正负之间的关系,即导函数大于0时原函数单调递增,导函数小于0时原函数单调递减.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案