精英家教网 > 高中数学 > 题目详情
设P、A、B、C是球O表面上的四个点,PA、PB、PC两两垂直,且PA=3,PB=4,PC=5,则球的半径为
 
分析:根据PA、PB、PC两两相互垂直,所以我们可以在球内做一个内切长方体,长方体的三条长宽高分别是5、4、3.则长方体的体对角线就是球的直径.问题转化为求矩形的对角线,利用三边的长求得答案.
解答:解:因为PA、PB、PC两两相互垂直,所以我们可以在球内做一个内切长方体,长方体的三条长宽高分别是5、4、3.
长方体的体对角线就是球的直径.
所以r=
32+42+52
4
=
5
2
2

故答案为:
5
2
2
点评:本题主要考查了球的性质.考查了学生形象思维能力,创造性思维能力的.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设P,A,B,C是球O表面上的四个点,PA,PB,PC两两垂直,且PA=1,PB=
2
,PC=
6
,则球O的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设P、A、B、C是球O表面上的四个点,PA、PB、PC两两垂直,PA=1,PB=
6
,PC=3,则球O的体积为
32π
3
32π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设P、A、B、C是球O表面上的四个点,PA、PB、PC两两互相垂直,且PA=3,PB=4,PC=5,则球的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设P,A,B,C是球O表面上的四点,满足PA,PB,PC两两相互垂直,且PA=PB=1,PC=2,则球O的表面积是
 

查看答案和解析>>

同步练习册答案