精英家教网 > 高中数学 > 题目详情
14.不用计算器求下列各式的值
(1)${log_3}\frac{{\root{4}{27}}}{3}+lg25+lg4+{7^{{{log}_7}2}}$
(2)${({2\frac{1}{4}})^{\frac{1}{2}}}-{({-9.6})^0}-{({3\frac{3}{8}})^{-\frac{2}{3}}}+{({1.5})^{-2}}$.

分析 (1)直接利用对数运算法则化简求解即可.
(2)利用有理指数幂的运算法则化简求解即可.

解答 解:(1)${log_3}\frac{{\root{4}{27}}}{3}+lg25+lg4+{7^{{{log}_7}2}}$
=$\frac{3}{4}$-1+lg100+2
=$\frac{15}{4}$.
(2)${({2\frac{1}{4}})^{\frac{1}{2}}}-{({-9.6})^0}-{({3\frac{3}{8}})^{-\frac{2}{3}}}+{({1.5})^{-2}}$
=$\frac{3}{2}$-1-$\frac{4}{9}$+$\frac{4}{9}$=$\frac{1}{2}$.

点评 本题考查导数运算法则以及有理指数幂的运算,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)和g(x)的定义域均为R,f(x)是偶函数,g(x)是奇函数,且g(x)的图象过点(1,3),g(x)=f(x-1),则f(2012)+g(2013)=(  )
A.6B.4C.-4D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角等于$\frac{π}{3}$,若|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,则2$\overrightarrow{a}$-3$\overrightarrow{b}$的模长为$\sqrt{61}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{{a}^{x},x<0}\\{(a-2)x+3a,x≥0}\end{array}\right.$满足对任意的x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,则a的取值范围是(0,$\frac{1}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列语句中是命题的是(  )
A.|x+a|B.0∈NC.集合与简易逻辑D.真子集

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如果一个点是一个指数函数与一个对数函数的图象的公共点,那么称这个点为“好点”.在下面的四个点M(1,1)、$P({\frac{1}{2},\frac{1}{2}})$、Q(2,1)、$H({2,\frac{1}{2}})$中,“好点”的个数为(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)满足f(x+1)=2x+1,则f(1)等于(  )
A.3B.-3C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.经过(-1,2)且与直线x+y-1=0垂直的直线是(  )
A.x-y+1=0B.x-y+3=0C.x+y+1=0D.x+y+3=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=$\left\{\begin{array}{l}{-x,-1≤x<0}\\{{x}^{2},0≤x<1}\\{x,1≤x≤2}\end{array}\right.$
(1)求f($\frac{3}{2}$),f[f (-$\frac{2}{3}$)]值;
(2)若f (x)=$\frac{1}{2}$,求x值;
(3)作出该函数简图(画在如图坐标系内);
(4)求函数的单调增区间与值域.

查看答案和解析>>

同步练习册答案