精英家教网 > 高中数学 > 题目详情

【题目】已知点p(1,m)在抛物线上,F为焦点,且.

(1)求抛物线C的方程;

(2)过点T(4,0)的直线交抛物线CA,B两点,O为坐标原点,求的值.

【答案】(1) (2)

【解析】试题分析:1)首先,确定参数P,然后,求解其方程;

2)首先,对直线的斜率分为不存在和存在进行讨论,然后,确定的取值情况.

解:(1抛物线Cy2=2pxp0),

焦点F0).

由抛物线定义得:|PF|=1+=3

解得p=3

抛物线C的方程为y2=8x

2)(il的斜率不存在时,

此时直线方程为:x=4

A44),B4﹣4),

l的斜率存在时,设

y=kx﹣4),k≠0

,可得

k2x28k2+8x+16k2=0

Ax1y1),Bx2y2),

x1+x2=

x1×x2=16

∴y1×y2=k2x1﹣4)(x2﹣4

=k2[x1x2﹣4x1+x2+16]

=k2[16﹣+16]

=﹣32

×=x1x2+y1y2=16﹣32=﹣16

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为平行四边形, 为侧棱的中点.

(Ⅰ)求证: ∥平面

(Ⅱ)若,,

求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足:a1=2,且a1 , a2 , a5成等比数列.
(1)求数列{an}的通项公式;
(2)记Sn为数列{an}的前n项和,是否存在正整数n,使得Sn>60n+800?若存在,求n的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1,记点M的轨迹为C.
(1)求轨迹C的方程;
(2)设斜率为k的直线l过定点P(﹣2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是平行四边形,的中点,且有,现以为折痕,将折起,使得点到达点的位置,且

1)证明:平面

2)若四棱锥的体积为,求四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆为圆上任一点.

(1)的最大值与最小值;

2的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和

若三角形的三边长分别为,求此三角形的面积;

探究数列中是否存在相邻的三项,同时满足以下两个条件:此三项可作为三角形三边的长;此三项构成的三角形最大角是最小角的2倍若存在,找出这样的三项,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ,其中k<﹣2.
(1)求函数f(x)的定义域D(用区间表示);
(2)讨论函数f(x)在D上的单调性;
(3)若k<﹣6,求D上满足条件f(x)>f(1)的x的集合(用区间表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1.
(1)求a的值及函数f(x)的极值;
(2)证明:当x>0时,x2<ex
(3)证明:对任意给定的正数c,总存在x0 , 使得当x∈(x0 , +∞)时,恒有x2<cex

查看答案和解析>>

同步练习册答案