优秀 | 非优秀 | 总计] | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 105 |
2 |
7 |
P(K2≥k0) | 0.10 | 0.05 | 0.025 |
k0 | 2.706 | 3.841 | 5.024 |
n(ad-bc)2 |
(a+b)(c+d)(a+c)(b+d) |
科目:高中数学 来源: 题型:
优秀 | 非优秀 | 总计] | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 105 |
2 |
7 |
P(K2≥k0) | 0.10 | 0.05 | 0.025 |
k0 | 2.706 | 3.841 | 5.024 |
n(ad-bc)2 |
(a+b)(c+d)(a+c)(b+d) |
查看答案和解析>>
科目:高中数学 来源: 题型:
2 |
7 |
优秀 | 非优秀 | 总计 | |
甲班 | 20 | ||
乙班 | 60 | ||
合计 | 210 |
n(ad-bc)2 |
(a+b)(c+d)(a+c)(b+d) |
P=(x2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源:2014届黑龙江省哈尔滨市高二下期中考试理数学卷(解析版) 题型:解答题
有甲、乙两个班级进行数学考试,按照大于或等于85分为优秀,85分以下为非优秀统计成绩后,得到如下联表:
|
优秀 |
非优秀 |
合计 |
甲班 |
30 |
|
|
乙班 |
|
50 |
|
合计 |
|
|
200 |
已知全部200人中随机抽取1人为优秀的概率为
(1)请完成上面联表;
(2)根据列联表的数据,能否有的把握认为“成绩与班级有关系”
(3)从全部200人中有放回抽取3次,每次抽取一人,记被抽取的3人中优秀的人数为,若每次抽取得结果是相互独立的,求的分布列,期望和方差
参考公式与参考数据如下:
查看答案和解析>>
科目:高中数学 来源:2012-2013学年陕西省西安市高三第十二次适应性训练理数学卷(解析版) 题型:解答题
有甲、乙两个班级进行数学考试,按照大于或等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表:已知从全部210人中随机抽取1人为优秀的概率为.
|
优秀 |
非优秀 |
总计 |
甲班 |
20 |
|
|
乙班 |
|
60 |
|
合计 |
|
|
210 |
(Ⅰ)请完成上面的列联表,并判断若按99%的可靠性要求,能否认为“成绩与班级有关”;
(Ⅱ)从全部210人中有放回抽取3次,每次抽取1人,记被抽取的3人中的优秀人数为,若每次抽取的结果是相互独立的,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
| 优秀 | 不优秀 | 合计 |
甲班 | 10 | 35 | 45 |
乙班 | 7 | 38 | 45 |
合计 | 17 | 73 | 90 |
利用列联表的独立性检验估计成绩与班级是否有关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com