精英家教网 > 高中数学 > 题目详情
4.已知双曲线${x^2}-\frac{y^2}{2}=1$的焦点为F1,F2,则焦距|F1F2|=(  )
A.1B.2C.$2\sqrt{3}$D.6

分析 双曲线${x^2}-\frac{y^2}{2}=1$中,a=1,b=$\sqrt{2}$,c=$\sqrt{3}$,即可求出焦距|F1F2|.

解答 解:双曲线${x^2}-\frac{y^2}{2}=1$中,a=1,b=$\sqrt{2}$,c=$\sqrt{3}$,
∴焦距|F1F2|=2$\sqrt{3}$,
故选C.

点评 本题考查双曲线的方程与性质,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|x-1|+|x+a|
(Ⅰ)当a=3时,解关于x的不等式|x-1|+|x+a|>6
(Ⅱ)若函数g(x)=f(x)-|3+a|存在零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,过椭圆M:$\frac{{x}^{2}}{2}$+y2=1的右焦点F作直线交椭圆于A,C两点.
(1)当A,C变化时,在x轴上求点Q,使得∠AQF=∠CQF;
(2)当直线QA交椭圆M的另一交点为B,连接BF并延长交椭圆于点D,当四边形ABCD的面积取得最大值时,求直线AC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知点P(0,3),抛物线C:y2=4x的焦点为F,射线FP与抛物线c相交于点A,与其准线相交于点B,则|AF|:|AB|=(  )
A.$3:\sqrt{10}$B.$1:\sqrt{10}$C.1:2D.1:3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}中,a3a7=-16,a4+a6=0,求:
(1)求{an}的通项公式;
(2){an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.单位圆中弧长为1的弧所对圆心角的正弧度数是(  )
A.πB.1C.$\frac{π}{2}$D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.用五点作图法作出函数$y=cos({x+\frac{π}{6}}),x∈[{-\frac{π}{6},\frac{11π}{6}}]$的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在直四棱柱ABCD-A1B1C1D1中,底面ABCD是边长为1的正方形,AA1=2,M、N分别是A1B1、A1D1中点,则BM与AN所成的角的余弦值为(  )
A.$\frac{15}{17}$B.$\frac{16}{17}$C.$\frac{5}{13}$D.$\frac{12}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,C(x)=$\frac{1}{3}$x2+10x(万元);当年产量不小于80千件时,C(x)=51x+$\frac{10000}{x}$-1450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部销售完.
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一产品的生产中所获利润最大,最大利润是多少?

查看答案和解析>>

同步练习册答案