精英家教网 > 高中数学 > 题目详情
7.若$\overrightarrow{a}$是非零向量,则下列各式中正确的是(  )
A.0•$\overrightarrow{a}$=0B.$\overrightarrow{a}$•$\overrightarrow{a}$=|$\overrightarrow{a}$|C.$\overrightarrow{a}$-$\overrightarrow{a}$=0D.0$\overrightarrow{a}$=$\overrightarrow{0}$

分析 根据零向量的概念,向量数乘的几何意义,数量积的计算公式,以及向量的数乘运算便可判断每个选项的正误,从而找出正确选项.

解答 解:$0•\overrightarrow{a}=\overrightarrow{0}$,$\overrightarrow{a}•\overrightarrow{a}={\overrightarrow{a}}^{2}=|\overrightarrow{a}{|}^{2}$,$\overrightarrow{a}-\overrightarrow{a}=\overrightarrow{0}$;
∴D正确.
故选D.

点评 考查零向量的概念,向量数乘的几何意义,以及向量的数量积的计算公式,向量数乘的运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)为偶函数,且当x<0时,f(x)=x-$\frac{1}{x}$,那么f(1)=(  )
A.0B.-2C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知直线l1:(m-2)x+(m+2)y+1=0,12:(m2-4)x-my+1-3=0.
(1)若l1∥l2,求:实数m的值;
(2)若l1⊥l2,求:实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=2x-$\frac{1}{{2}^{x}}$.
(1)判断函数f(x)的奇偶性;
(2)判断并证明函数f(x)的单调性;
(3)对于函数f(x),当x∈(-1,1)时,f(1-m)+f(2-m)≥0,求实数m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下面各向量中,与向量$\overrightarrow{m}$=(3,2)垂直的是(  )
A.$\overrightarrow{a}$=(2,3)B.$\overrightarrow{b}$=(-4,6)C.$\overrightarrow{c}$=(3,2)D.$\overrightarrow{d}$=(-3,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.一个沿某方向做直线运动的物体,位移s(单位:m)与时间t(单位:s)的关系为s(t)=$\left\{\begin{array}{l}{vt,0≤t{≤t}_{0}}\\{\frac{v}{2}t{,t}_{0}<t<{2t}_{0}}\end{array}\right.$则该物体在[0,$\frac{1}{2}$t0],[$\frac{1}{2}$t0,$\frac{3}{2}$t0]内的平均速度分别是v,$\frac{3v}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知$(lo{g}_{2}x)^{2}$-3log2x+2≤0,求函数y=4x-1-4•2x+2的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.f(α)=$\frac{sin(\frac{π}{2}-α)cos(10π-α)tan(-α+3π)}{tan(π+α)sin(\frac{5π}{2}+α)}$.
(1)化简f(α);
(2)若α∈(0,$\frac{π}{2}$),且sin(α-$\frac{π}{6}$)=$\frac{1}{3}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=2cos(ωx+$\frac{π}{6}$)(其中ω>0,x∈R)的最小正周期为10π.
(1)求ω的值;
(2)设α,β∈[0,$\frac{π}{2}$],f(5α+$\frac{5}{3}$π)=-$\frac{6}{5}$,f(5β-$\frac{5}{6}$π)=$\frac{16}{17}$,求sinα,cosβ的值.

查看答案和解析>>

同步练习册答案