(本题满分12分)计算:
(1)集合
(2)
科目:高中数学 来源: 题型:解答题
(本题满分12分)已知某公司生产某品牌服装的年固定成本为10万元,每生产一千件,需要另投入2.7万元.设该公司年内共生产该品牌服装千件并全部销售完,每千件的销售收入为万元,且.
(I)写出年利润(万元)关于年产量(千件)的函数关系式;
(Ⅱ)年生产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分15分)
如图,在半径为的圆形(为圆心)铝皮上截取一块矩形材料,其中点在圆上,点、在两半径上,现将此矩形铝皮卷成一个以为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),设矩形的边长,圆柱的体积为.
(1)写出体积关于的函数关系式,并指出定义域;
(2)当为何值时,才能使做出的圆柱形罐子体积最大?最大体积是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
( 本题满分14分) 提高过江大桥的车辆通行能力可改善整个城市的交通状况。在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度(单位:辆/千米)的函数。当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当2时,车流速度v是车流密度x的一次函数.
(Ⅰ)当时,求函数的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/每小时)可以达到最大,并求出最大值(精确到1辆/小时).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界.
(1)判断函数是否是有界函数,请写出详细判断过程;
(2)试证明:设,若在上分别以为上界,
求证:函数在上以为上界;
(3)若函数在上是以3为上界的有界函数,
求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
小王需不定期地在某超市购买同一品种的大米.现有甲、乙两种不同的采购策略,策略甲:每次购买大米的数量一定;策略乙:每次购买大米的钱数一定.若以(元)和(元)分别记小王先后两次买米时,该品种大米的单价,请问:仅这两次买米而言,甲、乙两种购买方式,从平均单价考虑,哪种比较合算?请进行探讨,并给出探讨过程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
设函数,
(1) 如果且对任意实数均有,求的解析式;
(2) 在(1)在条件下, 若在区间是单调函数,求实数的取值范围;
(3) 已知且为偶函数,如果,求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com