精英家教网 > 高中数学 > 题目详情

过抛物线的焦点作倾斜角为的直线交抛物线于两点,过点作抛物线的切线轴于点,过点作切线的垂线交轴于点

(1) 若,求此抛物线与线段以及线段所围成的封闭图形的面积。
(2) 求证:

(1) 。(2)利用抛物线定义证明

解析试题分析:(1)    1分
从而直线的方程为,与抛物线方程联立得   2分
,即   3分
弓形的面积为 ,   4分
三角形的面积为 …5分
所以所求的封闭图形的面积为 。   6分
(2)证明:如图,焦点,设   7分

,知,   8分
直线的方程为:,   9分
,得,点,   10分
。由抛物线定义知,即,   11分
直线的方程为 ,令得到   …12分
所以,故。   13分
考点:本题考查了直线与抛物线的位置关系
点评:解答抛物线综合题时,应根据其几何特征熟练的转化为数量关系(如方程、函数),再结合代数方法解答,这就要学生在解决问题时要充分利用数形结合、设而不求、弦长公式及韦达定理综合思考,重视对称思想、函数与方程思想、等价转化思想的应用

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

分别求适合下列条件圆锥曲线的标准方程:
(1)焦点为且过点椭圆;
(2)与双曲线有相同的渐近线,且过点的双曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

平面内动点到定点的距离比它到轴的距离大
(1)求动点的轨迹的方程;
(2)过的直线相交于两点,若,求弦的长。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线lykx+2(k为常数)过椭圆=1(ab>0)的上顶点B和左焦点F,直线l被圆x2y2=4截得的弦长为d.
(1)若d=2,求k的值;
(2)若d,求椭圆离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点, 是一个动点, 且直线的斜率之积为.
(1) 求动点的轨迹的方程;
(2) 设, 过点的直线两点, 若对满足条件的任意直线, 不等式恒成立, 求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两定点,,动点满足,由点轴作垂线段,垂足为,点满足,点的轨迹为.
(1)求曲线的方程;
(2)过点作直线与曲线交于,两点,点满足为原点),求四边形面积的最大值,并求此时的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知平面内一动点到点的距离与点轴的距离的差等于1.(I)求动点的轨迹的方程;(II)过点作两条斜率存在且互相垂直的直线,设与轨迹相交于点与轨迹相交于点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


已知椭圆:的一个焦点为且过点.

(Ⅰ)求椭圆E的方程;
(Ⅱ)设椭圆E的上下顶点分别为A1A2P是椭圆上异于A1A2的任一点,直线PA1PA2分别交轴于点NM,若直线OT与过点MN的圆G相切,切点为T
证明:线段OT的长为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的左、右焦点分别为,上顶点为,离心率为 , 在轴负半轴上有一点,且

(1)若过三点的圆 恰好与直线相切,求椭圆C的方程;
(2)在(1)的条件下,过右焦点作斜率为的直线与椭圆C交于两点,在轴上是否存在点,使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围;如果不存在,说明理由.

查看答案和解析>>

同步练习册答案