精英家教网 > 高中数学 > 题目详情

【题目】某公司准备加大对一项产品的科技改造,经过充分的市场调研与模拟,得到xy之间的一组数,其中x(单位:百万元)是科技改造的总投入,y(单位:百万元)是改造后的额外收益

x

2

3

5

7

8

y

5

8

12

14

16

其中是对当地GDP的增长贡献值.

1)若从五组数据中任取两组,求至少有一组满足的概率;

2)对于表中数据,甲、乙两个同学给出的拟合直线方程为:,试用最小二乘法判断哪条直线的拟合程度更好.(附:Q越小拟合度越好.

【答案】12)直线拟合程度更好

【解析】

1)利用列举法,结合古典概型概率计算公式,计算出所求概率.

2)计算出两种拟合方法的残差平方和,由此判断出直线拟合程度更好.

1)由题知后两组数据满足条件

从五组数据中任意取出两组有10种情况(如ABCDE中取出两个有ABACADAEBCBDBECDCEDE10种)

满足条件有后面两组,有一组满足条件的有种(如ADBDCDAEBECE),两组均可有1种(如DE)共有7种情况.

所以所求概率为

2)如表格

x

2

3

5

7

8

y

5

8

12

14

16

5

7

11

15

17

x

2

3

5

7

8

y

5

8

12

14

16

3.5

6

11

16

18.5

∴直线拟合程度更好

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

(1) 讨论的单调性;

(2) ,当时, ,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在定义域内有两个不同的极值点.

(Ⅰ)求实数的取值范围;

(Ⅱ)记两个极值点为,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象与过原点的直线恰有四个交点,设四个交点中横坐标最大值为,则( )

A. B. C. 0 D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Γy22pxp0)的焦点为FP是抛物线Γ上一点,且在第一象限,满足22

1)求抛物线Γ的方程;

2)已知经过点A3,﹣2)的直线交抛物线ΓMN两点,经过定点B3,﹣6)和M的直线与抛物线Γ交于另一点L,问直线NL是否恒过定点,如果过定点,求出该定点,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=|2x1|a

1)当a1时,解不等式fx)>x+1

2)若存在实数x,使得fxfx+1),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}的前n项和为Sn,且=9S6=60

(I)求数列{an}的通项公式;

II)若数列{bn}满足bn+1bn=n∈N+)且b1=3,求数列的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,动点分别与两个定点的连线的斜率之积为.

(1)求动点的轨迹的方程;

(2)设过点的直线与轨迹交于两点,判断直线与以线段为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点,直线相交于点,且它们的斜率之积为,记动点的轨迹为曲线

(1)求曲线的方程;

(2)过点的直线与曲线交于两点,是否存在定点,使得直线斜率之积为定值,若存在,求出坐标;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案