【题目】某公司准备加大对一项产品的科技改造,经过充分的市场调研与模拟,得到x,y之间的一组数,其中x(单位:百万元)是科技改造的总投入,y(单位:百万元)是改造后的额外收益
x | 2 | 3 | 5 | 7 | 8 |
y | 5 | 8 | 12 | 14 | 16 |
其中,,是对当地GDP的增长贡献值.
(1)若从五组数据中任取两组,求至少有一组满足的概率;
(2)对于表中数据,甲、乙两个同学给出的拟合直线方程为:,,试用最小二乘法判断哪条直线的拟合程度更好.(附:;Q越小拟合度越好.)
【答案】(1)(2)直线拟合程度更好
【解析】
(1)利用列举法,结合古典概型概率计算公式,计算出所求概率.
(2)计算出两种拟合方法的残差平方和,由此判断出直线拟合程度更好.
(1)由题知后两组数据满足条件
从五组数据中任意取出两组有10种情况(如ABCDE中取出两个有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共10种)
满足条件有后面两组,有一组满足条件的有种(如AD,BD,CD,AE,BE,CE),两组均可有1种(如DE)共有7种情况.
所以所求概率为
(2)如表格
x | 2 | 3 | 5 | 7 | 8 |
y | 5 | 8 | 12 | 14 | 16 |
5 | 7 | 11 | 15 | 17 | |
x | 2 | 3 | 5 | 7 | 8 |
y | 5 | 8 | 12 | 14 | 16 |
3.5 | 6 | 11 | 16 | 18.5 |
∴直线拟合程度更好
科目:高中数学 来源: 题型:
【题目】已知抛物线Γ:y2=2px(p>0)的焦点为F,P是抛物线Γ上一点,且在第一象限,满足(2,2)
(1)求抛物线Γ的方程;
(2)已知经过点A(3,﹣2)的直线交抛物线Γ于M,N两点,经过定点B(3,﹣6)和M的直线与抛物线Γ交于另一点L,问直线NL是否恒过定点,如果过定点,求出该定点,否则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x﹣1|﹣a.
(1)当a=1时,解不等式f(x)>x+1;
(2)若存在实数x,使得f(x)f(x+1),求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等差数列{an}的前n项和为Sn,且=9,S6=60.
(I)求数列{an}的通项公式;
(II)若数列{bn}满足bn+1﹣bn=(n∈N+)且b1=3,求数列的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,动点分别与两个定点,的连线的斜率之积为.
(1)求动点的轨迹的方程;
(2)设过点的直线与轨迹交于,两点,判断直线与以线段为直径的圆的位置关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定点,,直线、相交于点,且它们的斜率之积为,记动点的轨迹为曲线。
(1)求曲线的方程;
(2)过点的直线与曲线交于、两点,是否存在定点,使得直线与斜率之积为定值,若存在,求出坐标;若不存在,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com