精英家教网 > 高中数学 > 题目详情

(理科)已知连续函数y=f(x)在定义域内是单调函数,则方程f(x)=c(c是常数,c∈R)解的情况是

[  ]

A.有且只有一个解

B.至少一个解

C.至多一个解

D.可能无解,可能一个或多个解

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义:如果数列{an}的任意连续三项均能构成一个三角形的三边长,则称{an}为“三角形”数列.对于“三角形”数列{an},如果函数y=f(x)使得bn=f(an)仍为一个“三角形”数列,则称y=f(x)是数列{an}的“保三角形函数”,(n∈N).
(1)已知{an}是首项为2,公差为1的等差数列,若f(x)=kx,(k>1)是数列{an}的“保三角形函数”,求k的取值范围;
(2)已知数列{cn}的首项为2010,Sn是数列{cn}的前n项和,且满足4Sn+1-3Sn=8040,证明{cn}是“三角形”数列;
(3)[文科]若g(x)=lgx是(2)中数列{cn}的“保三角形函数”,问数列{cn}最多有多少项.
[理科]根据“保三角形函数”的定义,对函数h(x)=-x2+2x,x∈[1,A],和数列1,1+d,1+2d,(d>0)提出一个正确的命题,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•青浦区二模)[理科]定义:如果数列{an}的任意连续三项均能构成一个三角形的三边长,则称{an}为“三角形”数列.对于“三角形”数列{an},如果函数y=f(x)使得bn=f(an)仍为一个“三角形”数列,则称y=f(x)是数列{an}的“保三角形函数”,(n∈N*).
(1)已知{an}是首项为2,公差为1的等差数列,若f(x)=kx,(k>1)是数列{an}的“保三角形函数”,求k的取值范围;
(2)已知数列{cn}的首项为2010,Sn是数列{cn}的前n项和,且满足4Sn+1-3Sn=8040,证明{cn}是“三角形”数列;
(3)根据“保三角形函数”的定义,对函数h(x)=-x2+2x,x∈[1,A],和数列1,1+d,1+2d(d>0)提出一个正确的命题,并说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京市石景山区高三(上)期末数学试卷(文科)(解析版) 题型:解答题

定义:如果数列{an}的任意连续三项均能构成一个三角形的三边长,则称{an}为“三角形”数列.对于“三角形”数列{an},如果函数y=f(x)使得bn=f(an)仍为一个“三角形”数列,则称y=f(x)是数列{an}的“保三角形函数”,(n∈N).
(1)已知{an}是首项为2,公差为1的等差数列,若f(x)=kx,(k>1)是数列{an}的“保三角形函数”,求k的取值范围;
(2)已知数列{cn}的首项为2010,Sn是数列{cn}的前n项和,且满足4Sn+1-3Sn=8040,证明{cn}是“三角形”数列;
(3)[文科]若g(x)=lgx是(2)中数列{cn}的“保三角形函数”,问数列{cn}最多有多少项.
[理科]根据“保三角形函数”的定义,对函数h(x)=-x2+2x,x∈[1,A],和数列1,1+d,1+2d,(d>0)提出一个正确的命题,并说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年上海市静安、杨浦、青浦、宝山区高考数学二模试卷(文理合卷)(解析版) 题型:解答题

定义:如果数列{an}的任意连续三项均能构成一个三角形的三边长,则称{an}为“三角形”数列.对于“三角形”数列{an},如果函数y=f(x)使得bn=f(an)仍为一个“三角形”数列,则称y=f(x)是数列{an}的“保三角形函数”,(n∈N).
(1)已知{an}是首项为2,公差为1的等差数列,若f(x)=kx,(k>1)是数列{an}的“保三角形函数”,求k的取值范围;
(2)已知数列{cn}的首项为2010,Sn是数列{cn}的前n项和,且满足4Sn+1-3Sn=8040,证明{cn}是“三角形”数列;
(3)[文科]若g(x)=lgx是(2)中数列{cn}的“保三角形函数”,问数列{cn}最多有多少项.
[理科]根据“保三角形函数”的定义,对函数h(x)=-x2+2x,x∈[1,A],和数列1,1+d,1+2d,(d>0)提出一个正确的命题,并说明理由.

查看答案和解析>>

同步练习册答案