【题目】已知函数f(x)=ax+ (a,b∈R)的图象过点P(1,f(1)),且在点P处的切线方程为y=3x﹣8.
(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)的极值.
【答案】解:(Ⅰ)∵
函数f(x)=ax+ (a,b∈R)的图象过点P(1,f(1)),且在点P处的切线方程为y=3x﹣8.
∴ ,解得 ;
(Ⅱ)由(Ⅰ)得 , =
当x∈(﹣∞,﹣2),(2,+∞)时,f′(x)<0,当x∈(﹣2,0),(0,2)时,f′(x)>0.
即函数f(x)在(﹣∞,﹣2),(2,+∞)递减,在(﹣2,0),(0,2)递增,
∴f(x)极小值=f(﹣2)=4;
f(x)极大值=f(2)=﹣4.
【解析】(Ⅰ) ,依题意列式计算得 ;(Ⅱ)由(Ⅰ)得 , =
得函数f(x)在(﹣∞,﹣2),(2,+∞)递减,在(﹣2,0),(0,2)递增,
f(x)极小值=f(﹣2),f(x)极大值=f(2)
【考点精析】解答此题的关键在于理解函数的极值与导数的相关知识,掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.
科目:高中数学 来源: 题型:
【题目】已知函数(>0, ≠1, ≠﹣1),是定义在(﹣1,1)上的奇函数.
(1)求实数的值;
(2)当=1时,判断函数在(﹣1,1)上的单调性,并给出证明;
(3)若且,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列函数f(x)中,满足“x1x2∈(0,+∞)且x1≠x2有(x1﹣x2)[f(x1)﹣f(x2)]<0”的是( )
A.f(x)= ﹣x
B.f(x)=x3
C.f(x)=lnx+ex
D.f(x)=﹣x2+2x
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“奶茶妹妹”对某时间段的奶茶销售量及其价格进行调查,统计出售价x元和销售量y杯之间的一组数据如下表所示:
价格x | 5 | 5.5 | 6.5 | 7 |
销售量y | 12 | 10 | 6 | 4 |
通过分析,发现销售量y对奶茶的价格x具有线性相关关系.
(Ⅰ)求销售量y对奶茶的价格x的回归直线方程;
(Ⅱ)欲使销售量为13杯,则价格应定为多少?
注:在回归直线y= 中, , = ﹣ . =146.5.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:x∈R,x+ ≥2;命题q:x0∈ ,使sin x0+cos x0= ,
则下列命题中为真命题的是( )
A.( p)∧q
B.p∧( q)
C.( p)∧( q)
D.p∧q
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某鲜奶店每天以每瓶3元的价格从牧场购进若干瓶鲜牛奶,然后以每瓶7元的价格出售.如果当天卖不完,剩下的鲜牛奶作垃圾处理.
(1)若鲜奶店一天购进30瓶鲜牛奶,求当天的利润(单位:元)关于当天需求量(单位:瓶,)的函数解析式;
(2)鲜奶店记录了100天鲜牛奶的日需求量(单位:瓶),绘制出如下的柱形图(例如:日需求量为25瓶时,频数为5);
(i)若该鲜奶店一天购进30瓶鲜牛奶,求这100天的日利润(单位:元)的平均数;
(ii) 若该鲜奶店一天购进30瓶鲜牛奶,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于100元的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com