【题目】已知椭圆的离心率为,左、右焦点分别为圆, 是上一点, ,且.
(1)求椭圆的方程;
(2)当过点的动直线与椭圆相交于不同两点时,线段上取点,且满足,证明点总在某定直线上,并求出该定直线.
【答案】(1)(2)见解析
【解析】试题分析:(1)本问主要考查求椭圆标准方程,由,可得,所以,则在中, , ,再根据余弦定理及,可以求出的值,于是可以求出椭圆的方程;(2)本问主要考查直线与椭圆的综合应用,分析题意可知直线的斜率显然存在,故设直线方程为,再联立直线方程与椭圆方程,消去未知数得到关于的一元二次方程,根据韦达定理表示出两点横坐标之和及横坐标之积,于是设点 , 将题中条件转化为横坐标的等式,于是可以得出满足的方程,即可以证明总在一条直线上.
试题解析:(1)由已知得,且,
在中,由余弦定理得,解得.
则,所以椭圆的方程为.
(2)由题意可得直线的斜率存在,
设直线的方程为,即,
代入椭圆方程,整理得,
设,则.
设,由得
(考虑线段在轴上的射影即可),
所以,
于是,
整理得,(*)
又,代入(*)式得,
所以点总在直线上.
科目:高中数学 来源: 题型:
【题目】(文)已知矩形ABB1A1是圆柱体的轴截面,O、O1分别是下底面圆和上底面圆的圆心,母线长与底面圆的直径长之比为2:1,且该圆柱体的体积为32π,如图所示.
(1)求圆柱体的侧面积S侧的值;
(2)若C1是半圆弧 的中点,点C在半径OA上,且OC= OA,异面直线CC1与BB1所成的角为θ,求sinθ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆和直线,直线, 都经过圆外定点.
(1)若直线与圆相切,求直线的方程;
(2)若直线与圆相交于两点,与交于点,且线段的中点为,
求证: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题共14分)
如图,在四棱锥中, 平面,底面是菱形, .
(Ⅰ)求证: 平面
(Ⅱ)若求与所成角的余弦值;
(Ⅲ)当平面与平面垂直时,求的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的一段图象如图所示.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调增区间;
(3)求函数f(x)在[﹣ , ]上的单调减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: ()过点,且离心率为,过点的直线与椭圆交于, 两点.
(Ⅰ)求椭圆的的标准方程;
(Ⅱ)已知为坐标原点,且,求面积的最大值以及此时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在长方体中,,是棱上的一点.
(1)求证:平面;
(2)求证:;
(3)若是棱的中点,在棱上是否存在点,使得平面?若存在,求出线段的长;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com