精英家教网 > 高中数学 > 题目详情
已知Sn为数列{an}的前n项和,且Sn=2an+n2-3n-2(n∈N*
(I)求证:数列{an-2n}为等比数列;
(II)设bn=an•cosnπ,求数列{bn}的前n项和Pn
分析:(I)将Sn=2an+n2-3n-2利用数列中an,Sn的关系进行转化构造出新数列{an-2n},再据其性质证明.
(Ⅱ)将(I)中所求的an代入bn,分组求和法求和.
解答:解:(I)∵Sn=2an+n2-3n-2①∴Sn+1=2an+1+(n+1)2-3(n+1)-2
两式相减,得an+1=2an+1-2an+2n-2,∴an+1=2an-2n+2
故an+1-2(n+1)=2(an-2n),又在①式中令n=1得a1=4,∴a1-2≠0∴
an+1-2(n+1)
an-2n
=2

∴{an-2n}为等比数列                  
(II)由(I)知:an-2n=2•2n-1,∴an=2n+2n且cosnπ=(-1)n
当n为偶数时,设n=2k(k∈N*
则Pn=b1+b2+…+bn=(b1+b3+…+b2k-1)+(b2+b4+…+b2k)={-(2+2×1)-(23+2×3)-…-[22k-1+2(2k-1)]}+[(22+2×2)+(24+2×4)+…+(22k+2k)]=-(2+23+…+22k-1)-2[1+3+…+(2k-1)]+(22+24+…+22k)+2(2+4+…+2k)=-(2-22+23-24+…+22k-1-22k)+2[-1+2-3+4-…-(2k-1)+2k]=-
2[1-(-2)2k]
1-(-2)
+2k
=
2
3
(2n-1)+n

当n为奇数时,设n=2k-1(k∈N*),同理可得Pn=-
2(2k-1)+1+2
3
-[(2k-1)+1]
=-
2n+1+2
3
-(n+1)
=-
2n+1
3
-n-
5
3

综上所述,Pn=
-
2n+1
3
-n-
5
3
,n为奇数
2
3
(2n-1)+n,n为偶数
点评:本题考查等比数列的判断、数列求和,转化,计算的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知Sn为数列{an}的前n项和,且Sn=2an+n2-3n-2,n=1,2,3….
(Ⅰ)求证:数列{an-2n}为等比数列;
(Ⅱ)设bn=an•cosnπ,求数列{bn}的前n项和Pn
(Ⅲ)设cn=
1
an-n
,数列{cn}的前n项和为Tn,求证:Tn
37
44

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn为数列{an}的前n项和,点列(n,
Sn
n
)(n∈N+)
在直线y=x上.
(1)求数列{an}的通项an
(2)求数列{
1
anan+1
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn为数列{an}的前n项和,且3Sn+an=1,数列{bn}满足bn+2=3lo
g
 
1
4
an
,数列{cn}满足cn=bn•an
(1)求数列{an}的通项公式;
(2)求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn为数列{an}的前n项和,Sn=
1
2
n2+
11
2
n
;数列满足:b3=11,bn+2=2bn+1-bn,其前9项和为153
(1){bn}的通项公式;
(2)设Tn为数列{cn}的前n项和,cn=
6
(2an-11)(2bn-1)
,求使不等式T n
k
57
对?n∈N+都成立的最大正整数k的值.

查看答案和解析>>

同步练习册答案