精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥的底面是菱形,平面的中点.

(1)求证:平面平面

(2)棱上是否存在一点使得平面若存在,确定的位置并加以证明;若不存在,请说明理由.

【答案】(1)见解析(2) 点的中点

【解析】试题分析:(1)证面面垂直,可先由线面垂直入手即,进而得到面面垂直;(2)通过构造平行四边形,得到线面平行。

解析:

(1)连接,因为底面是菱形,,所以为正三角形.

因为的中点, 所以,

因为,,∴

因为,

所以.

, 所以面⊥面.

(2)当点的中点时,∥面.

事实上,取的中点,的中点,连结

为三角形的中位线,

又在菱形中,的中点,

所以四边形为平行四边形.

所以

∥面,结论得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C所对的边分别为a,b,c,若三边的长为连续的三个正整数,且A>B>C,3b=20acos A,则sin A:sin B:sin C为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某个体服装店经营某种服装,在某周内获得的纯利润y(单位:元)与该周每天销售这种服装的件数x之间的一组数据关系如下表:

x

3

4

5

6

7

8

9

y

66

69

73

81

89

90

91

(1)求纯利润y与每天销售件数x之间的回归方程;

(2)若该周内某天销售服装20件,估计可获得纯利润多少元?

已知:=280,xiyi=3 487,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三点A(1,2),B(﹣3,0),C(3,﹣2).
(1)求证△ABC为等腰直角三角形;
(2)若直线3x﹣y=0上存在一点P,使得△PAC面积与△PAB面积相等,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】统计表明,家庭的月理财投入(单位:千元)与月收入(单位:千元)之间具有线性相关关系.某银行随机抽取5个家庭,获得第1,2,3,4,5)个家庭的月理财投入与月收入的数据资料,经计算得

(1)求关于的回归方程

(2)判断之间是正相关还是负相关;

(3)若某家庭月理财投入为5千元,预测该家庭的月收入.

附:回归方程的斜率与截距的最小二乘估计公式分别为:

,其中为样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:x2﹣2x﹣8≤0,q:x2+mx﹣6m2≤0,m>0.
(1)若q是p的必要不充分条件,求m的取值范围;
(2)若p是q的充分不必要条件,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上的奇函数,且满足x>0时,f(x)+xf'(x)>0,f(2)=0,则不等式f(x)>0的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要得到函数y=sin(4x﹣ )的图象,只需将函数y=sin4x的图象(
A.向左平移 单位
B.向右平移 单位
C.向左平移 单位
D.向右平移 单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:﹣x2+4x+12≥0,q:x2﹣2x+1﹣m2≤0(m>0).
(Ⅰ)若p是q充分不必要条件,求实数m的取值范围;
(Ⅱ)若“¬p”是“¬q”的充分条件,求实数m的取值范围.

查看答案和解析>>

同步练习册答案