【题目】在直角坐标系xOy中,以坐标原点O为圆心的圆与直线: 相切.
(1)求圆O的方程;
(2)若圆O上有两点M、N关于直线x+2y=0对称,且 ,求直线MN的方程.
【答案】
(1)解:依题设,圆O的半径r等于原点O到直线 的距离,
即 .
得圆O的方程为x2+y2=4
(2)解:由题意,可设直线MN的方程为2x﹣y+m=0
则圆心O到直线MN的距离 .
由垂径分弦定理得: ,即 .
所以直线MN的方程为: 或
【解析】(Ⅰ)设圆O的半径为r,由圆心为原点(0,0),根据已知直线与圆O相切,得到圆心到直线的距离d=r,利用点到直线的距离公式求出圆心O到已知直线的距离d,即为圆的半径r,由圆心和半径写出圆O的标准方程即可;(Ⅱ)设出直线方程,利用点到直线的距离以及垂径定理求出直线方程中的参数,即可得到直线方程.
【考点精析】解答此题的关键在于理解圆的标准方程的相关知识,掌握圆的标准方程:;圆心为A(a,b),半径为r的圆的方程.
科目:高中数学 来源: 题型:
【题目】某消费品专卖店的经营资料显示如下:
①这种消费品的进价为每件14元;
②该店月销售量Q(百件)与销售价格P(元)满足的函数关系式为Q= ,点(14,22),(20,10),(26,1)在函数的图象上;
③每月需各种开支4400元.
(1)求月销量Q(百件)与销售价格P(元)的函数关系;
(2)当商品的价格为每件多少元时,月利润最大?并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(ex+1)(ax+2a﹣2),若存在x∈(0,+∞),使得不等式f(x)﹣2<0成立,则实数a的取值范围是( )
A.(0,1)
B.(0, )
C.(﹣∞,1)
D.(﹣∞, )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,曲线c1:y2=2px(p>0)与曲线c2:(x﹣6)2+y2=36只有三个公共点O,M,N,其中O为坐标原点,且 =0.
(1)求曲线c1的方程;
(2)过定点M(3,2)的直线l与曲线c1交于A,B两点,若点M是线段AB的中点,求线段AB的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A={x| <3x<9},B={x|log2x>0}.
(1)求A∩B和A∪B;
(2)定义A﹣B={x|x∈A且xB},求A﹣B和B﹣A.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}满足an+1>an , a1=1,且该数列的前三项分别加上1,1,3后顺次成为等比数列{bn}的前三项.
(1)求数列{an},{bn}的通项公式;
(2)令cn=anbn , 求数列{cn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数g(x)=3x , h(x)=9x .
(1)解方程:h(x)﹣8g(x)﹣h(1)=0;
(2)令p(x)= ,求值:p( )+p( )+…+p( )+p( ).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com