精英家教网 > 高中数学 > 题目详情
下列四个命题中,真命题的个数是(  )  
(1)如果a>0且a≠1,那么logaf(x)=logag(x)的充要条件是af(x)=ag(x)
(2)如果非零向量
a
b
c
满足:|
a
|=|
b
|=|
c
|
a
+
b
=
c
,则
a
b
夹角为60°
(3)若直线a平行于平面α内的一条直线b,则a∥α
(4)无穷等比数列{an}的首项a1=
1
2
,公比q=
1
2
,设Tn=a12+a32+…+a2n-12,则
lim
n→+∞
Tn=
1
3
分析:逐个判断:(1)注意对数的真数为正,故不能相互推出;(2)由向量的知识可求得夹角为120°;(3)由线面平行的判定定理可得;(4)为数列的极限问题,通过求和公式求到和,然后求极限可得结果.
解答:解:(1)由logaf(x)=logag(x)可推出af(x)=ag(x),但由af(x)=ag(x)不能推出logaf(x)=logag(x),
比如当f(x)=g(x)为负值时会使对数无意义,故为假命题;
(2)设向量
a
b
的夹角为θ,由
a
+
b
=
c
平方可得,|
a
|2+|
b
|2+2|
a
||
b
|cosθ=|
c
|2

解得cosθ=-
1
2
,θ=120°,故为假命题;
(3)由线面平行的判定定理可知:平面外的直线a平行于平面α内的一条直线b,才有a∥α,故为假命题;
(4)无穷等比数列{an}的首项a1=
1
2
,公比q=
1
2

Tn=a12+a32+…+a2n-12是首项为
1
4
,公比为
1
16
的等比数列的前n项和,
Tn=a12+a32+…+a2n-12=
1
4
(1-
1
16n
)
1-
1
16
=
4
15
(1-
1
16n
)
,可得
lim
n→+∞
Tn=
4
15
,故为假命题.
故选A.
点评:本题为命题真假的判断,涉及向量,指数函数和对数函数,数列的极限等问题,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1
满足条件:(1)焦点为F1(-5,0),F2(5,0);(2)离心率为
5
3
,求得双曲线C的方程为f(x,y)=0.若去掉条件(2),另加一个条件求得双曲线C的方程仍为f(x,y)=0,则下列四个条件中,符合添加的条件可以是(  )
①双曲线C:
x2
a2
-
y2
b2
=1
上的任意点P都满足||PF1|-|PF2||=6;
②双曲线C:
x2
a2
-
y2
b2
=1
的渐近线方程为4x±3y=0;
③双曲线C:
x2
a2
-
y2
b2
=1
的焦距为10;
④双曲线C:
x2
a2
-
y2
b2
=1
的焦点到渐近线的距离为4.
A、①③B、②③C、①④D、①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个判断中,正确判断的个数为(  )
①经过定点P(x0,y0)的直线都可以用y-y0=k(x-x0)表示;
②经过定点P(0,b)的直线都可以用y=kx+b表示;
③不经过原点的直线都可以用
x
a
+
y
b
=1
表示;
④任意直线都可以用Ax+By+C=0(A,B不同时为零)表示.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•厦门模拟)某赛季甲、乙两名篮球运动员各6场比赛得分情况用茎叶图记录,下列四个结论中,不正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是(  )
精英家教网
A、①②B、②③C、②④D、③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题:“”,命题:“”,给出下列四个判断:①是真命题,②是真命题,③是真命题,④是真命题,其中正确的是(     )

A. ② ④               B. ② ③

C. ③ ④               D. ① ② ③

查看答案和解析>>

同步练习册答案