精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=x2+2ax+2,x∈[-4,3].
(1)当a=-1时,求函数f(x)的最大值和最小值
(2)求实数a的取值范围,使y=f(x)在区间[-4,3]上是单调函数.

分析 (1)当a=-1时,函数f(x)=x2-2x+2的图象是开口朝上,且以直线x=1为对称轴的抛物线,进而可得x∈[-4,3]时,函数f(x)的最大值和最小值;
(2)若y=f(x)在区间[-4,3]上是单调函数.则-a≤-4,或-a≥3,解得答案.

解答 解:(1)当a=-1时,函数f(x)=x2-2x+2的图象是开口朝上,且以直线x=1为对称轴的抛物线,
若x∈[-4,3],则当x=1时,函数f(x)取最小值1,
当x=-4时,函数f(x)取最大值26,
(2)函数f(x)=x2+2ax+2的图象是开口朝上,且以直线x=-a为对称轴的抛物线,
若y=f(x)在区间[-4,3]上是单调函数.
则-a≤-4,或-a≥3,
解得:a∈(-∞,-3]∪[4,+∞)

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知函数$f(x)={log_2}(x+\sqrt{{x^2}+1})+\frac{{5{e^x}+3}}{{{e^x}+1}}$,x∈[-k,k](k>0)的最大值和最小值分别为M和m,则M+m=8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知f(x)=m(x-3m)(x+m+3),g(x)=2x-4.若同时满足条件:
①?x∈R,f(x)<0或g(x)<0;
②?x∈(-∞,-4),f(x)g(x)<0,
则m的取值范围是(-5,-$\frac{4}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=ax-2(a>0,且a≠1)的图象恒过定点P,P在幂函数f(x)的图象上,则f(x)=x0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.计算:
(1)${(2\frac{3}{5})^0}+{2^{-4}}×{(2\frac{1}{4})^{-\frac{3}{2}}}-{0.01^{0.5}}$;
(2)(lg2)2+lg2•lg50+lg25.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.定义在R上的函数f(x)满足f(1)=1,且对任意x∈R都有f$′(x)<\frac{1}{2}$,则不等式f(x3)$>\frac{{x}^{3}+1}{2}$的解集为(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设a,b∈R,则“a=0”是“ab=0”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=(m2+4m-5)x2+4(1-m)x+3.
(1)若对任意实数x,函数值恒大于零,求实数m的取值范围;
(2)若函数有两个不同的零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足a1=$\frac{3}{2}$,an+1=2-$\frac{1}{{a}_{n}}$.
(1)求$\frac{1}{{a}_{1}-1}$的值;
(2)证明:数列{$\frac{1}{{a}_{n}-1}$}为等差数列,并求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案