精英家教网 > 高中数学 > 题目详情
已知某几何体的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形,则此几何体的体积V为(  )
A、
32
3
B、
40
3
C、
16
3
D、40
考点:由三视图求面积、体积
专题:计算题,空间位置关系与距离
分析:根据三视图判断几何体是四棱锥,且四棱锥的底面为直角梯形,直角梯形的两底边长分别为1,4,高为4,四棱锥的高为4,把数据代入棱锥的体积公式计算.
解答: 解:由三视图知几何体为一四棱锥,其直观图如图,

其中四棱锥的底面为直角梯形,直角梯形的两底边长分别为1,4,高为4,
四棱锥的高为4,
∴四棱锥的体积V=
1
3
×
4+1
2
×4×4=
40
3

故选:B.
点评:本题考查了由三视图求几何体的体积,解答此类问题的关键是判断几何体的形状及图中数据所对应的几何量.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,PA⊥⊙O所在平面,AB是⊙O的直径,C是⊙O上一点,AE⊥PC,AF⊥PB,给出下列结论:①AE⊥BC;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC,其中真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定积分
1
-1
(|x|-1)dx
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C的对边分别是a、b、c.若asinA+csinC-
3
asinC=bsinB.则角B等于(  )
A、
6
B、
3
C、
π
3
D、
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=lnx2(  )
A、是偶函数且在(-∞,0)上单调递增
B、是偶函数且在(0,+∞)上单调递增
C、是奇函数且在(0,+∞)上单调递减
D、是奇函数且在(-∞,0)上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:

设α、β是两个不重合的平面,m、n是两条不重合的直线,则以下结论错误的是(  )
A、若α∥β,m?α,则 m∥β
B、若m∥α,m∥β,α∩β=n,则 m∥n
C、若m?α,n?α,m∥β,n∥β,则α∥β
D、若m∥α,m⊥β,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:

设复数z=
2i
-1+i
,则复数z2的实部与虚部的和为(  )
A、0B、2C、-2D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=4,前n项和Sn满足:Sn=an+1+n.
(Ⅰ)求an
(Ⅱ)令bn=
2n-1+1
nan
,数列{bn2}的前n项和为Tn.求证:?n∈N*,Tn
5
4

查看答案和解析>>

科目:高中数学 来源: 题型:

3
0
x2dx
=
 

查看答案和解析>>

同步练习册答案