(1)f′(x)=
+
=
(x>0),
当a>0时,f′(x)>0恒成立,
故f(x)在(0,+∞)上是单调递增函数.
(2)由f′(x)=0得x=-a,
①当a≥-1时,f′(x)≥0在[1,e]上恒成立,f(x)在[1,e]上为增函数.
f(x)
min=f(1)=-a=
得a=-
(舍).
②当a≤-e时,f′(x)≤0在[1,e]上恒成立,f(x)在[1,e]上为减函数.
则f(x)
min=f(e)=1-
=
得a=-
(舍).
③当-e<a<-1时,由f′(x)=0得x
0=-a.
当1<x<x
0时,f′(x)<0,f(x)在(1,x
0)上为减函数;
当x
0<x<e时,f′(x)>0,f(x)在(x
0,e)上为增函数.
∴f(x)
min=f(-a)=ln(-a)+1=
,得a=-
.
综上知:a=-
.
(3)由题意得:x
2>ln x-
在(1,+∞)上恒成立,
即a>xln x-x
3在(1,+∞)上恒成立.
设g(x)=xln x-x
3(x>1),则
g′(x)=ln x-3x
2+1.
令h(x)=ln x-3x
2+1,则
h′(x)=
-6x.
当x>1时,h′(x)<0恒成立.
∴h(x)=g′(x)=ln x-3x
2+1在(1,+∞)上为减函数,
则g′(x)<g′(1)=-2<0.
所以g(x)在(1,+∞)上为减函数,
∴g(x)<g(1)<-1,故a≥-1