精英家教网 > 高中数学 > 题目详情
9.已知等比数列{an}的前n项和为Sn,a1=1,且S1,2S2,3S3成等差数列.
(1)求数列{an}的通项公式;
(2)设$\frac{1}{b_n}={log_3}{a_{n+1}}•lo{g_3}{a_{n+2}}$求数列{bn}的前n项和Tn

分析 (1)设等比数列{an}的公比q,利用等差数列的定义和等比数列的前n项和列出关于q的方程,通过解方程求得q的值;然后由等比数列的定义求得其通项公式;
(2)利用(1)中的通项公式和对数函数的乘法计算法则求得{bn}的通项公式,然后利用裂项相消法求得数列{bn}的前n项和Tn

解答 解:(1)设等比数列{an}的公比q,
∵a1=1,
∴S2=1+q,${S_3}=1+q+{q^2}$.
∵2S2-S1=3S3-2S2
∴3q2-q=0.
∵q≠0,
∴$q=\frac{1}{3}$,
∴${a_n}={({\frac{1}{3}})^{n-1}}$.
(2)$\frac{1}{b^n}={log_3}{({\frac{1}{3}})^n}•{log_3}{({\frac{1}{3}})^{n+1}}=n({n+1})$,
∴${b_n}=\frac{1}{{n({n+1})}}=\frac{1}{n}-\frac{1}{n+1}$,
∴Tn=b1+b2+…+bn=$(1-\frac{1}{2})+({\frac{1}{2}-\frac{1}{3}})+…+({\frac{1}{n}-\frac{1}{n+1}})$=$1-\frac{1}{n+1}=\frac{n}{n+1}$.

点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.用边长为48cm的正方形铁皮做一个无盖的铁盒,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成一个铁盒.则所做的铁盒容积最大时,在四角截去的小正方形的边长为(  )
A.6 cmB.8 cmC.10 cmD.12 cm

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知实数x、y满足$\left\{\begin{array}{l}x≥1\\ y≤a\\ x-y≤0\end{array}\right.({a>1})$,若z=2x+y的最大值为9,则实数a的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在三棱柱ABC-A1B1C1中,侧棱A1A⊥平面ABC,AC⊥BC,AC=1,BC=2,S,点D是AB的中点.
(I)证明:AC1∥平面CDB1
(Ⅱ)在线段AB上找一点P,使得直线AC1与CP所成角的为60°,求$\frac{{|{\overrightarrow{AP}}|}}{{|{\overrightarrow{AB}}|}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数$f(x)=\frac{4}{4x+15}$.
(Ⅰ)求方程f(x)-x=0的实数解;
(Ⅱ)如果数列{an}满足a1=1,an+1=f(an)(n∈N*),是否存在实数c,使得a2n<c<a2n-1对所有的n∈N*都成立?证明你的结论.
(Ⅲ)在(Ⅱ)的条件下,设数列{an}的前n项的和为Sn,证明:$\frac{1}{4}<\frac{S_n}{n}≤1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=2x3+4x,且a+b<0,b+c<0,c+a<0,则f(a)+f(b)+f(c)的值是(  )
A.正数B.负数C.D.不能确定符号

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}+1,x<1}\\{{x}^{2}+ax,x≥1}\end{array}\right.$,若f[f(0)]=4a,则实数a等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x),g(x)都是定义在R上的可导函数,并满足以下条件:
①g(x)≠0
②f(x)=2axg(x)(a>0,a≠1)
③f(x)g′(x)<f′(x)g(x)
若$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=5,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f (x)=cosx,且f1(x)=f'(x),fn+1(x)=fn'(x)(n∈N*),则f2017(x)=(  )
A.-sin xB.-cos xC.sin xD.cos x

查看答案和解析>>

同步练习册答案