精英家教网 > 高中数学 > 题目详情

【题目】是圆上的任意一点,是过点且与轴垂直的直线,是直线轴的交点,点在直线上,且满足.当点在圆上运动时,记点的轨迹为曲线.

(1)求曲线的方程;

(2)已知点,过的直线交曲线两点,交直线于点.判定直线的斜率是否依次构成等差数列?并说明理由.

【答案】(1);(2)见解析

【解析】

(1)设点,由条件的线段比例可得,代入圆的方程中即可得解;

2)设直线的方程为,与椭圆联立得得,设,由 ,结合韦达定理代入求解即可.

(1)设点,因为,点在直线上,

所以.①

因为点在圆上运动,所以.②

将①式代入②式,得曲线的方程为.

(2)由题意可知的斜率存在,设直线的方程为

,得的坐标为.

,得.

,则有.③

记直线的斜率分别为

从而.

因为直线的方程为,所以

所以

.④

把③代入④,得.

,所以

故直线的斜率成等差数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知两点分别在轴和轴上运动,且,若动点满足.

1)求出动点P的轨迹对应曲线C的标准方程;

2)一条纵截距为2的直线与曲线C交于P,Q两点,若以PQ直径的圆恰过原点,求出直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】团体购买公园门票,票价如下表:

购票人数

1~50

51~100

100以上

门票价格

13元/人

11元/人

9元/人

现某单位要组织其市场部和生产部的员工游览该公园,若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元,那么这两个部门的人数之差为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为培养学生的阅读习惯,某校开展了为期一年的“弘扬传统文化,阅读经典名著”活动. 活动后,为了解阅读情况,学校统计了甲、乙两组各10名学生的阅读量(单位:本),统计结果用茎叶图记录如下,乙组记录中有一个数据模糊,无法确认,在图中以a表示.

(Ⅰ)若甲组阅读量的平均值大于乙组阅读量的平均值,求图中a的所有可能取值;

(Ⅱ)将甲、乙两组中阅读量超过15本的学生称为“阅读达人”. 设,现从所有的“阅读达人”里任取2人,求至少有1人来自甲组的概率;

(Ⅲ)记甲组阅读量的方差为. 若在甲组中增加一个阅读量为10的学生,并记新得到的甲组阅读量的方差为,试比较的大小.(结论不要求证明)

(注:,其中为数据的平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年9月,台风“山竹”在我国多个省市登陆,造成直接经济损失达52亿元.某青年志愿者组织调查了某地区的50个农户在该次台风中造成的直接经济损失,将收集的数据分成五组:(单位:元),得到如图所示的频率分布直方图.

(1)试根据频率分布直方图估计该地区每个农户的平均损失(同一组中的数据用该组区间的中点值代表);

(2)台风后该青年志愿者与当地政府向社会发出倡议,为该地区的农户捐款帮扶,现从这50户并且损失超过4000元的农户中随机抽取2户进行重点帮扶,设抽出损失超过8000元的农户数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆与抛物线的一个公共点,且椭圆与抛物线具有一个相同的焦点

(1)求椭圆及抛物线的方程;

(2)设过且互相垂直的两动直线与椭圆交于两点,与抛物线交于两点,求四边形面积的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,PAABPABCABBCPAABBC=2,D为线段AC的中点,E为线段PC上一点.

(1)求证:PABD

(2)求证:平面BDE平面PAC

(3)PA平面BDE时,求三棱锥EBCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若恒成立,求处的切线方程;

(2)若有且只有两个整数解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD是边长为1的正方形,PA⊥底面ABCDPA1,点M是棱PC上的一点,且AMPB

1)求三棱锥CPBD的体积;

2)证明:AM⊥平面PBD

查看答案和解析>>

同步练习册答案