精英家教网 > 高中数学 > 题目详情

已知公比不为1的等比数列的前项和为,且成等差数列.
(1)求数列的通项公式;
(2)设,求数列的前项和.

(1)数列的通项公式为; (2).

解析试题分析:(1)因为成等差数列,∴,得,则 .
(2)先由裂项相消法求出,然后可直接求出数列的前项和.  

试题解析:(1)∵成等差数列,∴,∴
,则       6分
(2)∵  
      12分
考点:数列通项公式及前项和的求法、数列综合应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列的前n项和满足
(1)写出数列的前3项
(2)求数列的通项公式;
(3)证明对于任意的整数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前三项分别为,(其中为正常数)。设
(1)归纳出数列的通项公式,并证明数列不可能为等比数列;
(2)若=1,求的值;
(3)若=4,试证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在公差不为0的等差数列中,,且成等比数列.
(1)求的通项公式;
(2)设,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知an=n×0.8n(n∈N*).
(1)判断数列{an}的单调性;
(2)是否存在最小正整数k,使得数列{an}中的任意一项均小于k?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}满足a1=3,an+1anp·3n(n∈N*p为常数),a1a2+6,a3成等差数列.
(1)求p的值及数列{an}的通项公式;
(2)设数列{bn}满足bn,证明:bn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

观察下列三角形数表,假设第n行的第二个数为an(n≥2,n∈N*).

(1)依次写出第六行的所有6个数;
(2)归纳出an+1an的关系式并求出{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的通项.
(Ⅰ)求
(Ⅱ)判断数列的增减性,并说明理由;
(Ⅲ)设,求数列的最大项和最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知{an}是等差数列,a1=3,Sn是其前n项和,在各项均为正数的等比数列{bn}中,b1=1,且b2+S2=10,S5 =5b3+3a2.
(I )求数列{an}, {bn}的通项公式;
(II)设,数列{cn}的前n项和为Tn,求证

查看答案和解析>>

同步练习册答案