精英家教网 > 高中数学 > 题目详情

已知圆C:x2+y2+2x+a=0上存在两点关于直线l:mx+y+1=0对称.
(I)求m的值;
(Ⅱ)直线l与圆C交于A,B两点,数学公式数学公式=-3(O为坐标原点),求圆C的方程.

解:(I)x2+y2+2x+a=0?(x+1)2+y2=1-a,圆心(-1,0).
∵圆C:x2+y2+2x+a=0上存在两点关于直线l:mx+y+1=0对称,∴直线过圆心,
∴-m+0+1=0?m=1,
故m的值为1.
(II)设A(x1,y1),B(x2,y2
=x1x2+y1y2=2x1x2+x1+x2+1
?2x2+4x+1+a=0,
根据韦达定理:x1+x2=-2;x1x2=
∴1+a-2+1=-3?a=-3.
∴圆C的方程是:(x+1)2+y2=4.
分析:(I)根据圆的对称性判定直线过圆心,先求圆心坐标,再代入直线方程求解;
(II)设A、B的坐标,根据向量坐标运算与韦达定理根与系数的关系求解即可.
点评:本题主要考查直线与圆相交的性质及向量坐标运算.巧妙的利用韦达定理根与系数的关系设而不求是求解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:x2+y2-6x-4y+8=0.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件双曲线的标准方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)一个圆与x轴相切,圆心在直线3x-y=0上,且被直线x-y=0所截得的弦长为2
7
,求此圆方程.
(2)已知圆C:x2+y2=9,直线l:x-2y=0,求与圆C相切,且与直线l垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•普陀区一模)如图,已知圆C:x2+y2=r2与x轴负半轴的交点为A.由点A出发的射线l的斜率为k,且k为有理数.射线l与圆C相交于另一点B.
(1)当r=1时,试用k表示点B的坐标;
(2)当r=1时,试证明:点B一定是单位圆C上的有理点;(说明:坐标平面上,横、纵坐标都为有理数的点为有理点.我们知道,一个有理数可以表示为
qp
,其中p、q均为整数且p、q互质)
(3)定义:实半轴长a、虚半轴长b和半焦距c都是正整数的双曲线为“整勾股双曲线”.
当0<k<1时,是否能构造“整勾股双曲线”,它的实半轴长、虚半轴长和半焦距的长恰可由点B的横坐标、纵坐标和半径r的数值构成?若能,请尝试探索其构造方法;若不能,试简述你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州一模)已知圆C:x2+y2=r2(r>0)与抛物线y2=40x的准线相切,若直线l:
x
a
y
b
=1
与圆C有公共点,且公共点都为整点(整点是指横坐标.纵坐标都是整数的点),那么直线l共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2=4与直线L:x+y+a=0相切,则a=(  )

查看答案和解析>>

同步练习册答案