精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
m2
+y2=1
的左、右焦点分别为F1、F2,离心率为
2
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=x+t(t>0)与椭圆C交于A,B两点.若原点O在以线段AB为直径的圆内,求实数t的取值范围.
分析:(Ⅰ)依题意,可知m>1,且e=
2
2
,由此可m2=2,从而可得椭圆C的方程;
(Ⅱ)设A(x1,y1),B(x2,y2),则原点O在以线段AB为直径的圆内,等价于x1x2+y1y2<0,将直线与椭圆方程联立,利用韦达定理,可建立不等式,从而可求实数t的取值范围.
解答:解:(Ⅰ)依题意,可知m>1,且e=
2
2
,所以e2=
1
2
=
a2-b2
a2
=1-
b2
a2
=1-
1
m2
,所以m2=2,即椭圆C的方程为
x2
2
+y2=1
.…(5分)
(Ⅱ)设A(x1,y1),B(x2,y2),则原点O在以线段AB为直径的圆内,等价于
π
2
<∠AOB<π
(A,O,B三点不共线),也就等价于
OA
OB
<0
,即x1x2+y1y2<0…①…(7分)
联立
y=x+t
x2+2y2=2
,得3x2+4tx+2(t2-1)=0,所以△=16t2-24(t2-1)>0,即0<t2<3…②
x1+x2=
-4t
3
x1x2=
2t2-2
3
…(10分)
于是y1y2=(x1+t)(x2+t)=x1x2+t2+t(x1+x2)=
t2-2
3

代入①式得,
2t2-2
3
+
t2-2
3
<0
,即t2
4
3
适合②式…(12分)
又t>0,所以解得0<t<
2
3
3
即求.…(13分)
点评:本题考查椭圆的标准方程,考查向量知识的运用,考查韦达定理,解题的关键是联立方程,运用韦达定理解题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2m2
+y2
=1 (常数m>1),P是曲线C上的动点,M是曲线C上的右顶点,定点A的坐标为(2,0)
(1)若M与A重合,求曲线C的焦点坐标;
(2)若m=3,求|PA|的最大值与最小值;
(3)若|PA|的最小值为|MA|,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
m2
+
y2
n2
=1(0<m<n)
的离心率为
3
2
,且经过点P(
3
2
,1)

(1)求椭圆C的方程;
(2)设直线l:y=kx+t(k≠0)交椭圆C于A、B两点,D为AB的中点,kOD为直线OD的斜率,求证:k•kOD为定值;
(3)在(2)条件下,当t=1时,若
OA
OB
的夹角为锐角,试求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C 1
x2
a2
+
y2
b2
=λ1
(a>b>0,λ1>0)和双曲线C 2
x2
m2
-
y2
n2
=λ2(λ2≠0)
,给出下列命题:
①对于任意的正实数λ1,曲线C1都有相同的焦点;
②对于任意的正实数λ1,曲线C1都有相同的离心率;
③对于任意的非零实数λ2,曲线C2都有相同的渐近线;
④对于任意的非零实数λ2,曲线C2都有相同的离心率.
其中正确的为(  )

查看答案和解析>>

科目:高中数学 来源:上海 题型:解答题

已知椭圆C:
x2
m2
+y2=1
(常数m>1),P是曲线C上的动点,M是曲线C上的右顶点,定点A的坐标为(2,0)
(1)若M与A重合,求曲线C的焦点坐标;
(2)若m=3,求|PA|的最大值与最小值;
(3)若|PA|的最小值为|MA|,求实数m 的取值范围.

查看答案和解析>>

同步练习册答案