精英家教网 > 高中数学 > 题目详情
11.如图1,在直角梯形ABCD中,AD∥BC,∠BAD=$\frac{π}{2}$,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到图2中△A1BE的位置,得到四棱锥A1-BCDE.(Ⅰ) 证明:CD⊥平面A1OC;
(Ⅱ) 若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角(锐角)的余弦值.

分析 (Ⅰ)根据线面垂直的判定定理即可证明:CD⊥平面A1OC;
(Ⅱ)若平面A1BE⊥平面BCDE,建立空间坐标系,利用向量法即可求平面A1BC与平面A1CD夹角的余弦值.

解答 证明:(Ⅰ)在图1中,∵AB=BC=1,AD=2,E是AD的中点,∠BAD=$\frac{π}{2}$,
∴BE⊥AC,
即在图2中,BE⊥OA1,BE⊥OC,
则BE⊥平面A1OC;
∵CD∥BE,
∴CD⊥平面A1OC.
解:(Ⅱ)若平面A1BE⊥平面BCDE,
由(Ⅰ)知BE⊥OA1,BE⊥OC,
∴∠A1OC为二面角A1-BE-C的平面角,
∴∠A1OC=$\frac{π}{2}$,
如图,建立空间坐标系,
∵A1B=A1E=BC=ED=1.BC∥ED
∴B($\frac{\sqrt{2}}{2}$,0,0),E(-$\frac{\sqrt{2}}{2}$,0,0),A1(0,0,$\frac{\sqrt{2}}{2}$),C(0,$\frac{\sqrt{2}}{2}$,0),
$\overrightarrow{BC}$=(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$,0),$\overrightarrow{{A}_{1}C}$=(0,$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$),$\overrightarrow{CD}$=$\overrightarrow{BE}$=(-$\sqrt{2}$,0,0),
设平面A1BC的法向量为$\overrightarrow{m}$=(x,y,z),平面A1CD的法向量为$\overrightarrow{n}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BC}=0}\\{\overrightarrow{m}•\overrightarrow{{A}_{1}C}=0}\end{array}\right.$,得$\left\{\begin{array}{l}{-x+y=0}\\{y-z=0}\end{array}\right.$,令x=1,则y=1,z=1,即$\overrightarrow{m}$=(1,1,1),
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{{A}_{1}C}=0}\\{\overrightarrow{n}•\overrightarrow{CD}=0}\end{array}\right.$,得$\left\{\begin{array}{l}{a=0}\\{b-c=0}\end{array}\right.$,取b=1,得$\overrightarrow{n}$=(0,1,1),
则cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2}{\sqrt{3}•\sqrt{2}}$=$\frac{\sqrt{6}}{3}$,
∴平面A1BC与平面A1CD夹角(锐角)的余弦值为$\frac{\sqrt{6}}{3}$.

点评 本题主要考查空间直线和平面垂直的判定以及二面角的求解,建立坐标系利用向量法是解决空间角的常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.函数y=$\sqrt{1-x}$+log3x的定义域为(  )
A.(-∞,1]B.(0,1]C.(0,1)D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,有一圆盘其中的阴影部分的圆心角为75°,若向圆内投镖,如果某人每次都投入圆内,那么他投中阴影部分的概率为$\frac{5}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如果质点M按规律s=3+t2运动,则在一小段时间[2,2.1]中相应的平均速度是4.1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ax2+bx+c,其中a∈N*,b∈N,c∈Z.
(1)若b>2a,且f(sinx)(x∈R)的最大值为2,最小值为-4,试求函数f(x)的最小值;
(2)若对任意实数x,不等式4x≤f(x)≤2(x2+1)恒成立,且存在x0使得f(x0)<2(x02+1)成立,求c的值;
(3)对于问(1)中的f(x),若对任意的m∈[-4,1],恒有f(x)≥2x2-mx-14,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.己知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-ax,x>0}\\{{2}^{x}-1,x≤0}\end{array}\right.$,若不等式f(x)+1≥0在x∈R上恒成立,则实数a的取值范围为(  )
A.(-∞,0]B.[-2,2]C.(-∞,2]D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知D点在⊙O直径BC的延长线上,DA切⊙O于A点,DE是∠ADB的平分线,交AC于F点,交AB于E点.
(Ⅰ)求∠AEF的度数;
(Ⅱ)若AB=AD,求$\frac{AD}{BD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,⊙O的弦AB、CD相交于E,过点A作⊙O的切线与DC的延长线交于点P.PA=6,AE=CD=EP=9.
(Ⅰ)求BE;
(Ⅱ)求⊙O的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.正方体ABCD-A1B1C1D1中,异面直线B1C与DC1所成角的大小为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步练习册答案