精英家教网 > 高中数学 > 题目详情

某学校100名学生期中考试语文成绩的频率分布直方图如下右图所示,其中成绩分组区间是:
求图中a的值;
根据频率分布直方图,估计这100名学生语文成绩的平均分;

若这100名学生语文成绩某些分数段的人数与数学成绩相应分数段的人数
之比如下表所示,求数学成绩在之外的人数。

分数段




x:y
1:1
2:1
3:4
4:5
 

(1);  (2)73;  (3)10

解析试题分析:(1)由频率分布直方图的性质可10(2a+0.02+0.03+0.04)=1,解方程即可得到a的值;(2)由平均数加权公式可得平均数为55×0.05+65×0.4+75×0.3+85×0.2+95×0.05,计算出结果既得.(3)先求出数学成绩在[50,90)之内的人数,用100减去此数,得出结果.解题的关键是理解频率分布直方图,熟练掌握频率分布直方图的性质,且能根据所给的数据建立恰当的方程求解.
试题解析:(1)、        2分
解得            3分
(2)、50-60段语文成绩的人数为: 
60-70段语文成绩的人数为:4分
70-80段语文成绩的人数为:
80-90段语文成绩的人数为:
90-100段语文成绩的人数为:       5分
                      7分
=73                              8分
(3)、依题意:
50-60段数学成绩的人数=50-60段语文成绩的人数为=5人            9分
60-70段数学成绩的的人数为=50-60段语文成绩的人数的一半=  10分
70-80段数学成绩的的人数为=               11分
80-90段数学成绩的的人数为=               12分
90-100段数学成绩的的人数为=        13分
考点:1.考查频率分布估计总体分布;2.频率分布直方图.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

据《中国新闻网》10月21日报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改”引起广泛关注.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人调查(若所选择的在校学生的人数低于被调查人群总数的80%,则认为本次调查“失效”),就“是否取消英语听力”的问题,调查统计的结果如下表:

态度
 

  

 
应该取消
 
应该保留
 
无所谓
 
在校学生
 
2100人
 
120人
 
y人
 
社会人士
 
600人
 
x人
 
z人
 
已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.05.
(Ⅰ)现用分层抽样的方法在所有参与调查的人中抽取360人进行深入访谈,问应在持“无所谓”态度的人中抽取多少人?
(Ⅱ)已知y≥657,z≥55,求本次调查“失效”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为预防H7N9病毒爆发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如下表:

分组
A组
B组
C组
疫苗有效
673
a
b
疫苗无效
77
90
c
已知在全体样本中随机抽取1个,抽到B组疫苗有效的概率是0.33.
(I)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取样本多少个?
(II)已知b≥465,c ≥30,求通过测试的概率

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在一次数学统考后,某班随机抽取10名同学的成绩进行样本分析,获得成绩数据的茎叶图如下.

(Ⅰ)计算样本的平均成绩及方差;
(Ⅱ)现从80分以上的样本中随机抽出2名学生,求抽出的2名学生的成绩分别在上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村2001到2005年五年间每年考入大学的人数,为了方便计算,2001年编号为1,2002年编号为2,……,2005年编号为5,数据如下:

年份(x)
 
1
 
2
 
3
 
4
 
5
 
人数(y)
 
3
 
5
 
8
 
11
 
13
 
(1)从这5年中随机抽取两年,求考入大学的人数至少有年多于10人的概率.
(2)根据这年的数据,利用最小二乘法求出关于的回归方程,并计算第年的估计值。
参考:用最小二乘法求线性回归方程系数公式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

成都市为“市中学生知识竞赛”进行选拔性测试,且规定:成绩大于或等于90分的有参赛资格,90分以下(不包括90分)的则被淘汰。若现有500人参加测试,学生成绩的频率分布直方图如下:

(I)求获得参赛资格的人数;
(II)根据频率直方图,估算这500名学生测试的平均成绩;
(III)若知识竞赛分初赛和复赛,在初赛中每人最多有5次选题答题的机会,累计答对3题或答错3题即终止,答对3题者方可参加复赛,已知参赛者甲答对每一个问题的概率都相同,并且相互之间没有影响,已知他连续两次答错的概率为,求甲在初赛中答题个数的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了对某课题进行研究,用分层抽样方法从三所科研单位A、B、C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人):

科研单位
相关人数
抽取人数
A
16

B
12
3
C
8

(Ⅰ)确定的值;
(Ⅱ)若从科研单位A、C抽取的人中选2人作专题发言,求这2人都来自科研单位A的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校高三期末统一测试,随机抽取一部分学生的数学成绩分组统计如下表:
(Ⅰ)求出表中的值,并根据表中所给数据在下面给出的坐标系中画出频率分布直方图;

分组
频数
频率















合计



(Ⅱ)若全校参加本次考试的学生有600人,试估计这次测试中全校成绩在分以上的人数;
(Ⅲ)若该校教师拟从分数不超过60的学生中选取2人进行个案分析,求被选中2人分数不超过30分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校为了解高三年级不同性别的学生对体育课改上自习课的态度(肯定还是否定),进行了如下的调查研究.全年级共有名学生,男女生人数之比为,现按分层抽样方法抽取若干名学生,每人被抽到的概率均为
(1)求抽取的男学生人数和女学生人数;
(2)通过对被抽取的学生的问卷调查,得到如下列联表:

 
否定
肯定
总计
男生
 
10
 
女生
30
 
 
总计
 
 
 
①完成列联表;
②能否有的把握认为态度与性别有关?
(3)若一班有名男生被抽到,其中人持否定态度,人持肯定态度;二班有名女生被抽到,其中人持否定态度,人持肯定态度.
现从这人中随机抽取一男一女进一步询问所持态度的原因,求其中恰有一人持肯定态度一人持否定态度的概率.
解答时可参考下面临界值表:

0.10
0.05
0.025
0.010
0.005

2.706
3.841
5.024
6.635
7.879

查看答案和解析>>

同步练习册答案